i i

i
I

|
i
Rt
i
|
‘"

5

m

III'-,.IIII|-.-':-' i
prr
rr
HM
e

|

|
i=_.'.
Il oo

N
Oy
N
o

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

ED 060 919

AUTHOR
TITLE

INSTITUTION
SPONS AGENCY
BUREAU NO
PUE DATE
GRANT

NOTE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

ABSTRACT

1968=-June 30,

DOCUMENT RESUME
52 LI 003 610

Silver, Steven 5.; Meredith, Joseph C.

DISCUS Interactive System Users' Manual. Final
Report.

California Univ., Berkeley. Inst. of Library
Research.

Of fice of Education (DHEW), Washington, D.C. Rureau
of Research.

BR-7-1085

Sep 71

OEG-1-7-071085-4286

173p.; {11 References)

MF=-%0.65 HC-$6.58

*Automation; Computer Assisted Instruction; Computer
Programs; Data Bases; Electronic Data Processing;
*Information Processing; *Information Retrieval;
*Library Education; *Library Science; Man Machine
Systems; Manuals; Programing Languages; Research
*University of California Berkeley

The results of the second 18 months {December 15,

1970) of effort toward developing an Information

Processing Laboratory for research and education in library science
is reported in six volumes. This volume contains: the basic on-line

interchange,

specifications,

DISCUS operations, programming in DISCUS, concise DISCUS

system author mode, and exercises. DISCUS is an

interpretive man-computer interface system. The six parts of this

manual contains:

(1) an introduction to the general idea of computer

assisted instruction, (2) an explanation of the several DIScCUS

statements,

(3) a discussion of the role of the programmer vis-a-vis

the author/instructor, (4) definitions and specifications, ({5) a
description of the program debugging facilities provided by the
DISCUS language and (6) six series of exercises supplementing Parts

IT and III.

through 003609,

(Other volumes of this report are available as LI 003607

and LI 003611). (Author/NH)

U.5. DEFARTMENT OF HEALTH,
EDUCATION & WELFARE
OFFICE OF EDUCATION]

THIS DOCUMENT HAS BEEN REPRO.

BUCED EXACTLY AS RECEIVED FROM

THE PERSDN OF ORGANIZATION ORIG-

INATING IT POINTS OF VIEW OR OPIN-

IONS STATED DO ROT MECESSARRY

REPRESENT OFFICIAL OFFICE OF EDU-

CATION POSITION OR PGLICY

FINAI: REPORT
Project No. T-1085)
Grant No. OBG=-1=7-=0T71085-4286

ED 060919

DISCUS INTERACTIVE SYSTEM
USERS' MANUAL

By

Steven 5. Silver
Joseph C. Meredith

Institute of Library Research
University of California
Berkeley, California 94720

September 1971

The research reported herein was performed pursuant to a grant
with the Office of Education, U.S. Department of Health, Education,
and Welfare. Contractors undertaking such projects under Govern-

ment sponsorship are encouraged to express freely their professional
Judgment in the conduct of the project. Points of view or opinions
stated do not, therefore, necessarily represent official Office

<&

= of Education position or poliecy.
oo

<
<

U.8. DEPARTMENT OF
HEALTH, EDUCATION, AND WELFARE

Office of Education
by Bureau of Research

1

TABLE OF CONTENTS

" IRTRODUCTION

PART

PART

Definition. « . . +« + & s « o « 4
Background. . . .« « « + « s = s 2 s 2 e 4 % & s & s
Documentatien . . . e b s 3 s e =2 s & w w
Users' Manual Conventlan c e e s e s e e e
Orgenization. . . .+ + « « & & & « & « = « 2 &« &+ 2 W

I - THE BASIC ON-LINE IWTERCHANGE

Language. . « « + + « « + &+ &+ . s
Approach. s e e s e s
The Nature of "Interactlmn‘ s e e e e e e e e s

Three DISCUS Tools. s e e e e e e e .
The DISCUS System . . . C e e e e e e e e s e
Compilation and Execuulon D
Operational Procedures.« « + & & = & s+ s =

Student Data Sets L ...
Revision. . . . « & + & « & o v 4 4« 4 4 4 s e s .

II - DISCUS OPERATIONS

Operation Codes . « + ¢ & « & & s & o o o & 4 o = =«
WRITE or W. . . e e e e e e e e e e e e e e e
WRITE(NF) or W(NF) e e a e e e e e e e e s
WRITE(ND) or W{ND}. « + & v &« « « « v « & & o o o
ANSWER or A . . C e s e s e e e e e e e e e s
ANSWER(NF) or A(NF) e e e e e e e e e e e e e
SCAN or S5C.
Scanning for WCrd“. v s e e e e e e e e e e e e
Scanning for Literals i . e e e e
Scanning for Words and Literals Intermixed . s e s
Punctuation Marks and Special Characters.
Suboperands s o+ s & 4 s s f 4 s a s 8 s
Spoilers. s s oa s s . .
Expanding Coﬁtents of Varlables 11to Othez Strlngs.
Variables e s e e s
DEFINE(A) or D(A) - DEFINE(C) or D(C) e e e e e
BET or S. . & & & & v 4 & o 2 « s e 4 4 e 4 e e
TEST or T e s x e e s s e s s s s e e s
The Deecision Process. C e e e e e e e e e e e s
MATCH and FAIL Counters « . « « . . .

JUMP or F . + + « ¢ & &+ s+ s = & & & s « = « »
Recapitulation. . . . s e e e s ek

The Block Structure (MATCH - FAIL - ENDJ. . .
BIOCK ©F Bi & &+ v 4 & v % s o & o & = s o « » o
USE or U, . & & & & ¢ & & o & ¢ o s s o s s 5 o »
FRAME or FR . . ¢ ¢ &« v v 4 & 4 & 4 & « o o s s « =
NOTE or N v & v v 4 v s e o o = « o & & « o s « o« &

page

WA

16
‘16

.19
.19

62

TO
77
¥

TABLE OF CONTENTS {cont.)

PART ITI - FROGRAMMING IN DISCUS
Tdentifying the Programmer.
CATI as a Preduct. . . . e s s .
Satisfactory Computer A351sted Dialog .
Programming as an Exercise in Anonymity .
Preparations. 0 . .
Corpus. . . P
Starred Var;ables e e e e s e e s s
PART IV - CONCISE DISCUS SPECIFICATIONS
Specifications.+« . .«
Arechitecture.
Reguirements. . . . s e e s e e e e s
Current Impleméntation e e s s e e e e
Glossary. . . + v v v 4 4 s s e e e e e
OPCODES & « & v v v v v v s o e v v w
WRITE or W. . f e e e s e s e e
WRITE(NF) or waF\. e e e e e e e
WRITE(ND) or W(ND).+ . . . + . .
ANSWER or A . . S e e e s s e w s e s
ANSWER(NF) or A(NF) . e e e
BCAN or BC. . v v + & & & « 4
DEFINE or D . « « v« « 4 « . .
SET or 5.
TEST or T . & v v v v v v s v e
JUMP or 0 . . . v v v e e e e e e e
MATCH or M. . . + + ¢ v v v v v v « . .
FAIL or F v v v v v v 6 v e a e n e a
BLOCK or B. ¢+ « + & & & v v v « 4 .
FRAME o FR . & 4+ v « s v 4 « s o o v o W
NOTE or N . . & v v v 4 4 s o v v 0w e
EID or E, . . « v« v v e e e e e e e
USE or U, . .,
Job Control Language for Ccmplllng DISCUS
PART V - SYSTEM AUTHOR MODE
Description e s . .
Distinguished from Proctor Authcr Mcde .
Diagnostic Display. « « « v & . .
System Author Mode Commands
EXIT (Berkeley) e e e e e e
END (UCLA). v v v v v v v v v e v e e e
EDITING . . . & v v v v v 4 6 o e w w .
PART VI -~ EXBERCISES. . . + & & v v o o o+ .

*

113
113
113
11k
116
119
119
113
1ig
120
iz2z
123
126
127
130
130
131
131
131
132
132
132
133
13k

137
137
138

. 138
. 1ko

1ko
1ho

1ha

FOREWORD

This report contains the results of the second 18 months (December 15,
1968 - June 30, 1970) of effort toward developing an Information Pro=
cessing Leboratory for research and education in library science. The
work was supported by a grant (OEG-1-7-071085-4286) from the Bureau of
Research of the Office of Educstion, U.S. Department of Health,
Bducation, and Welfare and also by the University of California. The
prinecipal investigator was M.E. Maron, Professor of Librarianship.

This report is being issued as six separate volumes by the Institute
of Library Research, University of California, Berkeley. They are:

* Maron, M.E. and Don Sherman, et al., An Information Processing
Laboratory for Education and Research in Library Science: Fhase 2.

Contents——Introduction and Overview; Problems of Library
Science; Facility Development; Operational Experience.

¢ Mignon, Edmond and Ireme L. Travis. LABSEARCH: TLR Associative
Search System Terminal Users' Manual,

Contents—-Basic Operating Instructions; Commands; Scoring
Measures of Association; Subject Authority List.

* Meredith, Joseph C. Reference Search System (BEFSEABCE)ste;S' Manual.

Contents—-Rationale and Description; Definitions; Index and
Coding Key; Retrieval Procedures; Examples.

+ 8ilver, Steven S. and Joseph C. Meredith. DISCUS Interactive
System Users' Manual.

Contents—=-Basic On-Line Interchange; DISCUS Operations;
Programming in DISCUS; Concise DISCUS Specifications;
System Author Mode; Exercises.

' Bmith, Stephen F, and William Harrelson. TIMS: A Terminal Monitor
System for Information Processing.

Contents—-~Part I: Users' Guide - A Guide to Writing Programs
for TMS
Part II: Internals Guide - A Program Logic Manual
for the Terminal Monitor System

Aiyer, Arjun X. The CIMARON System: Modular Programs for the
Organization and Search of Large Files.

Contents~-Data Base Selection; Entering Search Requests; Search
Results; Record Retrieval Controls; Data Base Generation.

Because of the Jjoint support provided by the File Organization Project
(OEG=1-7-071083-5068) for the development of DISCUS and of TMS, the volumes
concerned with these programs are included as pert of the final report for
both projects. Also, the CIMARON System, whose development was supported by
the File Organization Project, has been incorporated into the Laboratory
operation and therefore, in order to provide a balanced view of the total
facility obtained, that volume is included as part of this Leboratory pro-
ject report. (See Shoffner, R.M., et &l., The Organization and Search of

.ographic Records in On-Line Computer Systems: Project Summary.))

Q
' . =-iii-
.. 4

e e A A

ACKNOWLEDGMENTS

Principal assistance in formulating the system specifications
of DISCUS was provided by Allan Humphrey, Project Manager, Institute
of Library Research. During the design and development phase, the
project benefited from the active support of the staff of the Campus
Computing Network, University of California at Los Angeles, and the
use of its services and facilities.

During the entire period of testing and validating the system,
and later in connection with the drafting of this manual, Rodney Randall,
Systems Programmer, Institute of Library Research, participated very
actively and effectively, contributing many hours of his personal time.
He is solely responsible for the PILOT-to-DISCUS translstor which
automatically converts PILOT source coding to comparable DISCUS code.

In addition, we wish to thank and to commend the work of the In-
stitute personnel who prepared these pages for publication:
Ellen Drapkin, Carcle Fender, Bettye Geer, Linda Herold, Jan Kumataka,
Barbare Parrish, and Rhozalyn Perkins.

i

NTRODUCTION

DEFINITION DISCUS is an interprétive man-computer
interface system, currently implemented
as a conversational CAI language. It is

programmed entirely in assembly language, for the IEM 360

series.

BACKGROUND In July of 1967 the Institute of Library
Research initiated Project No. T7-1085,
An Information Processing Laboratory for
Education and Research in Library Science, supported under Office
of Fducation grant No. OEG-1-7-071085-4286, with contributory
support by the University of California. In the design of such
a laboratory, one of the important aspects to be investigated
was the suitability of Computer Assisted Instruction (CAI) as
a means of presenting certain types of library science materials
to students in a graduate School of Librarianship. We needed
to know what prior preparation of such materials would be re-
quired, what would be the programming problems in developing
an on-line dialogue for instructional purposes, and how best
to implement this kind of facility for graduate studies..

These requirements led to the actual writing and program-
ming of a substantial amount of instructional material in the
CAI medium, and to its implementation irn the Information Pro-
cessing Laboratory - using first teletype and typewriter termi-~
nals, and subsequently cathode ray tube (CRT) terminals acquired
under a University grant for innovative projects in education.

When our research on the Information Processing Labora-
tory first began, we investigated the then existing

languages of the type known as "selected character-string

O

ERIC

Aruitoxt provided by Eic:

match languages," i.e., those capable of scanning free input
for specified key elements, then acting on success or failure
in finding these elements as instructional branching determin-
ators. Among those considered, a new language under develop—
ment in the Office of Information Systems, University of
California &t San Francisco, called PILOT¥*, appeared to be the
most promising, and accordingly it was chosen as the new lan-—
guage in which we would encode our first courses of instruction.
However, the choice was necessarily provisional, since PILOT
itself was still under development, and there was no guarantee
that it would stabilize in exactly the form which would be best
for the system envisaged for the Information Processing
Laboratory.

During 1968 and most of 1969, most of eur CAT materials
were programmed in PILOT, and were run under the PILOT system
operating on an IBM 360/50 at the San Francisco campus Computing
Center, with linkage by commercial grade telephone lines and
acoustic couplers to our mechanical terminsls in the Laboratory.
This arrangement was ococasioned by the fact PILOT requires con-
siderably more core memory than was available to us through the
IBM 360/L40 system serving the other needs of the Information
Processing Laboratory, sited on the Berkeley campus. At the
same time it demonstrated the feasibility of such an operation
conducted at a remote distance from the central processing unit.

With the acquisition of the CRT system as the primary
terminal hardware for the Laboratory, the need for CRT-compatible
software became controlling. Since PILOT does not provide this
kind of interface, it was necessary for us either to try to write
one or to adapt another language whieh already incor?orated this
feature. The latter appeared to be the more feasible course,
especially in view of the problem of core regquirements raised

by continued use of PILOT.

¥Karpinski, R., et al, PILOT....a conversational language -
User Guide. Office of Information Services, University of Cali-
fornia Medical Center, San Francisco, California. 12/1/68.

-y

e 0§ R i 00

O

ERIC

Aruitoxt provided by Eic:

Meanwhile, the Institute of Library Research at the University
of California at Los Angeles had generated certain papers dealing
with LYRIC, the CAI language developed by Gloria M. and
Leonard C. Silvern.® 1In the fall of 1968, Steven 5. Silver
(Staff, Institute of Library Research, UCLA) undertook to
examine the feasibility of adapting LYRIC to our needs. However,
the problem of making the necessary changes proved more formidable
than that of writing a new language from the beginning, and in
January, 1969, it was decided that we should proceed on the latter
basis. We were aware, of course, that there is much to be said
in favor of standardization of CAI languages, but felt that in
the context of the kind of research we were performing, a new de-
parture from existing forms was justified. It now appears that
much additional research and development work remains to be
done before a complete spectrum of CAI language characteristics
and capabilities will be available, and that standardization should
be based on such a spectrum rather than on an attempt to make all
programs look alike.

The features to be embodied in the new language were the
subject of numerous exchanges between Institute staff at Berkeley
and Los Angeles, and the version finally decided on was specified
on March 2L, 1969, These specifications followed the dicta that
the system:

(1) accommodate natural language input

*¥Described in Computer-gssisted instruction: specifications

for CAI programs and programmers, by Gloria M. Silvern and
Leonard C. Silvern. Proceedings of the 21lst Annual Conference of
the Association for Computing Machinery. ACM Publ. P-66
(Thompson Book Co., Washington, D.C., 1966) 1. 57-65.

Three of the papers referred to are limited distribution
items. The fourth, A Description of LYRIC, a language for remote

in the final report on Project No. T7-1083, Grant No. OEG-1-T-
071083-6068, A Study of the Organization and Search of Bibliographic
Holdings Records in On-line Computer Systems: Phase I, by

Jay Cunningham, Will Schieber, and Ralph Shoffner, Institute of
Library Research, University of California, Berkeley, Californisa,
March, 1969.

i e e e

i o Sl S i

(2)
(3)

(%)

(5)
(6)

maintain individual student data

restart individual students at the appropriate
location, following a period of sign-off

operate under a multi-course, multi-terminal time
sharing system

provide Iinterface with CRT terminals

use as little core memory as possible, both in
compiling and in execution

Owing to the fact that a considerable amount of actual pro-

gramming had been carried out prior to the final specification,

it was possible to implement the new language for operational

testing in May, 1969. In July, 1969, it was implemented at both

the Berkeley and the UCLA campuses under the name of "DISCUS". Since

and revision. We now feel that it is sufficiently reliable and

effective to Jjustify its release for general use.

DOCUMENTATION Complete documentation is available for

prospective users of DISCUS, at cost, and

with the understanding that suitable

credits will be accorded to the Office of Education, Department

of Health, Education, and Welfare for their support, and to the

Institute of Library Research, University of California.

USERS' MANUAL Since there are two kinds of users to

CONVENTIONS

in the system and the other with actual consummation of dia- EH

be considered, one concerned with the pro- i

gramming and implementation of materials

logue at the terminal, we have adopted the following convention i

for the purposes of this manual:

By USER is meant the author, instructor, or coder using

By STUDENT is meant a person using a CRT terminal, inter-

ERIC

Aruitoxt provided by Eic:

the DISCUS system to develop instructional or
other dialogue materials.

acting with the system. (It should be understood,

however, that the system is not necessarily limited

4
g

to educational uses.) Note also that the USER
(i.e., author) must use the system as does a
STUDENT in order to prepare and debug instructional

programs.

A glossary of technical terms as they are used in this manual
is provided in Part IV (CONCISE DISCUS SPECIFICATIONS).

Where necessary to draw attention to one or more blanks in
examples given in the text where their presence might be overlooked,
they are represented by the letter "b" with hyphen over-strike,
thus:

P = blank,.

ORGANIZATION It is not intended that this manual be read
in strict page sequence. It should be
read and studied in much the same way
as that in which it was written ~ as an interweaving of needs
and purposes, of explanation and speculation, of rules, examples,
warnings, and invitations. One should not feel uneasy in exploring
this material in seemingly random fashion, nor too exasperated when
he finds it necessary to retrace earlier steps.

What we seek is a construet in the ancient sense of a piling
up, a heaping together of elements which will in due course com-
bine themselves in a manifest pattern. The functional relation-
ships of the various pieces of the system cannot be well understood
until something (not necessarily everything) is known about each.
Until a concept of these relationships is achieved, the pieces
themselves will have little meaning.

The manual is organized in six parts, as follows:

I. THE BASIC ON-LINE INTERCHANGE

This part is intended to introduce the general idea of
CAT programming, and to demonstrate the operation

of three of the standard DISCUS commands.

ERIC

Aruitoxt provided by Eic:

IIT.

Iv.

DISCUS OPERATIONS

An explanstion of the several DISCUS statements, and
a discussion of the decision process, block structures,

and varigbles.

PROGRAMMING IN DISCUS

Discussion of the role of the programmer vis-a—vis
the author/instructor. Technical considerations
bearing on the design of CAI routines. Examples of

useful subroutines. Advanced DISCUS programming.

CONCISE DISCUS SPECIFICATIONS

Definitions and specifications.

SYSTEM AUTHOR MODE

Description of the program debugging facilities provided
by the DISCUS language.
EXERCISES

Six series of exercises supplementing Parts II and IIT.

i

g P

44

LANGUAGE The kind of programming we will be
desling with is generally termed "high
level," in that it rises atop a sub-

structure of service routines prescribed in great detail, rou-

tines which we can rely upon without worrying sbout how they

do the things they do. Theoretically, thé highest level of

programming language would be ordinary written communication,

as if we were to tell the computer, in so many words, "I want
you to program yourself to discuss counterpoint," or "How are
you feeling today?" Of course at such a level, or any other
level above that of detailed bit-manipulation, one does not
really communicate with a computer, but with another person,
one who has - we hope - foreseen at least part of our needs and
has provided a program to accommodate them.

Unfortunately, the more elaborate the structure, the more
costly becomes the effort of maintaining verbal or near-verbal
communication through the computer. Simplicity at the top cén
mean ghastly complications near the bottom, all of which exact
a price in terms of computer rescurces,

DISCUS tries to cut through some of these complications by
dealing with the computer's operating system in quite funda-
mental terms rather than through the intermedistion of one of
the medium- or high-level languages such as FORTRAN, SNOBOL, or
PL/1. This accounts for DISCUS' speed and econamy, as well as
for the fact that not everything is made simple and easy for
the user (i.e., the programmer or encoder). In order to program
properly in DISCUS - that is, to write conversational sequences
of real versatility and power - the user must be adépt with a

number of highly specialized tools in various combinations,

rather than with a number of all-purpose tools.

AFPROACH In trying to decide how to present a
system which needs to be seen in its
entirety in order to be perceived as a

system at all, we have concluded that a very general approach

will be well worth the risk of a few initial misconceptions which

will be readily corrected in subsequent portions of the Manual.

THE NATURE OF In order to establish an "interactive"
" INTERACTION" situation, the programmer wants to force
the computer to respond in a certain way
to stimulli coming to it from some outside socurce — in our case
from a CRT (cathode-ray tube) terminal. Basically the stimulus
will alwgys be a button-push, such as the user pressing (or
thumping, if he likes) a key marked "attention," or "send," or
"interrupt,” or "carriage return". This act is like prodding a
dumb animal with a stick. One expects a regponse of some kind
unless the brute is very sick indeed. Usually the prod means
"Hey, look what I wrote for you on my keyboard!"

The computer loocks.

Its program tells it to reaet in a certain way to what it
sees, depending on wheat that happens to be.

It reacts, usually by putting together some kind of message
and flipping it to a slow-footed retainer for inseribing on the
face of the cathode~ray tube screen at the terminal. If we con~
verted microseconds to a more comprehensible scale, we might say
that the computer handed the message to a stone-carver who only
worked Tuesdays — but that would be all right, since the terminal
user wouldn't be heard from again for sbout a year anyway.

It is customary to represent a dialogue between the computer

and the individual as beginning with the computer, but this is in-

accurate and can be quite misleading. The computer always has to be

y-48-
i3

et e . it S5 5

prodded, even before it will say "Sign in, please.” Viewed in
this light, every action of the computer is a reaction. The human
is always the protagonist, even though at times he may feel quite
otherwise. ‘

The business of the CAI programmer is to equip the computer
with adequate instructions to permit 1t to cope in some reason-
able way with questions, commands, and statements expressed in

ways that are human and therefore subtle, unpredictable, and messy.

THREE DISCUS TOOLS In order to demonstrate the basic mechan-
ism, we now provide the user with three
basic tools with which he can simulate this

relationship. With these tools he can even write a primitive DISCUS

program:

A codeword - ANSWER meaning At thie point in the program
the human types something"

A codeword - SCAN meaning "Try to recognize, in the
answer, something speci-
fied here"

A codeword - WRITE meaning '"'Write on the CRT screen
whatever is specified
here"

SCAN and WRITE always refer to something specified by the coder:

aw

SCAN GREEN

WRITE CORRECT

oy

~ ANSWER merely receives an unpredictable input typed by the student:

ANSWER (2) s

Observe the semicolons associsted with each of the three code-

words. They mark the end of that particular piece of eoding,

or statement. In other words, they "delimit the statement.”
There are several additional codewords in the DISCUS system,

but these three will suffice for the moment. Suppose we arrange

them in a cirele, to show the basic action-reaction cycle.

The computer ("central processing unit") does all its work
in the shaded part of the diagram, in the space of, say, 1/1000
second. The solid line represents the stone carver at work,
hacking out the display at the rate of 250 characters per second.
The unshaded part represents the student's reaction, occupying
10, 15, 30 seconds or more...however long it takes him to read
what has been written for him on the screen, to type in something

new, and to push the "send" button.

[

~10-

Proportioned according to time, the diagram would look
like this:

16
11—

]
L

THE KINDLY
PROFESSOR
ROUT INE

Computer procensing
contentedly along

I'm here for my chysies leason.

{What's that?
Oh, Mmmm, Must
have dozed off.)

i

¥

i | WRITE . Well, well, What do you want to know about phyaica?;
|

\Eji:::::m H
WRITE l Borry; my Ecoclogy class is too full already.; . B
el T A OY RS B TR 00 tnd Bn-Se8 S

o — 4
=" ‘ns%ﬁ5_5*5‘5_5“s§_hq§_———=—eeg}ﬁaﬂggj k

]

P

FPlease continue.;

S o Sl i VL byt A e e

{Now I can forget about

I
g
U
]
"
L
o
=
r
a
El
)
Q
o
>
€
=
s [+4
=
a

—e
Lo

EE

Another way to represent the process is with the coded

statements themselves:

B Ecan | crEEw.

WRITE | CORRECT:

B

represents the point where the "send" push or prod or
is administered.

represents the point where the computer turns to other

- duties,

There is virtually no limit to the number of SCANs and
WRITEs that can be programmed to follow a "send" signal:

Each of the four SCANs dbove could lock for something different in
the answer, and each of the WRITEs might be suppressed if the SCAN
preceding it failed to find that something. TIn that little word "ig"
we become involved in the decision process, represented in the cartoon

on page 12 by the inevitsble diamond.

-13-

18

Below are some blank statements, arranged so that the decision
process can be indicated by line number. The reader is invited

to write a short program in DISCUS at this point.

Instructions:

Jot down a short question:._ _ _ , . —

Now fil1ll in the blanks ieaving line(student input)

until last:

vswsrRA L L,

SCAN _ _] 3 If yes, go to___ 3

®E

If no, go *e 3

(3) wRITE — —3 Go to __ ;

(L) scaw - If yes, go to___;
If no, go to —

WRITE — —— Go to ___;

SCAN - _ o : If yom, go to

If »u, go to 5

WRITE N — 3 Go to ___;
SCAN -~ - S -

®0

T ves, go to____;

If mo, so to —_— 5

WRITE , — . —
SCAN - . e If yes, vo %o____;

-

If no, go > 5
to

5
H

= = = — = - 2

ANSWER-----= (next cycle)

OB ©
EI
F,

Later we shall investigate the additional codewords for gecomplish-
ing the items on the right hand side of the page . but for the pre-

send purposes we can waive this requirement.

Lk

There is no way in which we can comment on your first
piece of DISCUS programming, but it might look like something
like this:

Question: (from a previous WRITE) Where 18 Rome?

TANSHER. RS ey
SCAN ___Ttaly 5 If yes, go to _3 ;
If no, go to _4

WRITE Correect ____ ; Go to 12 ;
SCAN Georgia

If yes, go to 5 ;

If no, go to & 3

WRITE I _mean the original ; Go to _21 ;

Rome 5
SCAN ___Europe ; If yes, go to _7 ;
If no, go to _8 ;
What_country in 3 Go to _1;
Europe ? ———3
SCAN ___Don't know s If yes, go to _9_;

If no, go to 10 ;
WRITE Yoy really should _ 3 Go to _I1

SCAN __Asia 3 If yes, go to 11 ;
» If no, go to 12

WRITE ___ Hardly _3 Go to 12_;
WRITE It's in Ttaly. Where is Paris?;

CRB @ @ 6 @ O GO O
3

‘original ANSWER statement, to give the user a chance to try a
different reply to the same guestion. The sbility to perform

such recursion is indispensable in CAI.

=0

O

ERIC

Aruitoxt provided by Eic:

THE DISCUS SYSTEM A '"CAI system" comprises all the hardware
and software dedicated to the specifiec
purpose of computer-assisted instruetion,

plus certain hardware and software customarily shared with other

systems in the same computer center. The computer itself is a

prime example of shared hardware. The computer's own operating

system (in this case IEM's 05/360) is a good example of shared
software.

Peripheral equipment, such as disc storage units, may be shared
(i.e., their capacity allocated either on a physical location basis
or on a real time basis) or they may be dedicated to a single sys-
tem or use.

The services of control and auxiliary software, such as a
time-sharing monitor, may also be shared between systems.

Although DISCUS can be spoken of as a CAI "language," it should

be thought of more as the dedicated software coumponents «f a

CAL system. Only after it has been implemented in the L:
actually "resides" in a computer, is the system complete and

ready to operate.

COMPILATION AND The system must be capable of two distinet
EXECUTION and separate operations: First, it must
be able to accept programs submitted to
it for compilation into executable form, and to complle them -
if in fact they are compilable according to the logic of the
compiler. Normally an error in the source program submitted
for compilation will not prevent compilation of the remainder
of the program; only the faulty stétement (and perhaps its
associated statements) will be unexecutable.

Second, it must be able to execute programs, once they have

been accepted, compiled, and stored in its repertory. '"Execution'
takes place when a student at a remote terminal is actually on
line. Execution does not change the system itself; it is simply

a product of the system according to the instantaneous conditions

i

1777 — _
— —_

J/5CUS
SOURCE

CoMPILER | N LISTING

TME SHBEHE
MoN/7orR

NECHS
EXECUER

TTUDENT
TERMIHBL

-17=

O

ERIC

Aruitoxt provided by Eic:

existing within it. Execution is time-related, in the same way
that the running of a movie film is time-related - the product
in the latter case being a static image on a2 screen, at a single

instant, or a moving image in a span of several instants.

OPERATIONAL Four distinct operations are involved in
PROCEDURES the realization of the two basic functions

deseribed on the preceding page:

1. Two blocks of code - the DISCUS COMPILER and the DISCUS
EXECUTOR -~ are read, assimilated, and stored by the computer.

These two blocks or modules are shown in the adjoining diagram.

2. One or more SOURCE programs, consisting of data either in the
form of tape or punched cards encoded according to the DISCUS

rules, is submitted to the computer. This can be done at any time -
minutes or months after the DISCUS COMFPILER and EXECUTOR have been

successfully established.

3. Whenever a SOURCE program is submitted, the DISCUS COMPILER
attempts to compile it; that is, to arrange and store it in exe-
cutable form. It also causes a complete listing of the compiled
version of the program, called DISCUS OBJECT, to be printed.
This listing shows the numbers that have been assigned by the
COMPILER to individual statements, the condition code levels at
which they will be presumed to operate, and the place in disc
storage where each is stored away. It alsoc includes a list of
the labels attached to certain statements, showing where and how
they have been referred to in the program. It also furnishes an
indication of some types of coding errors. (A page of object

listing, reduced to 45%, is shown on page 20.)

4, The program submitted as SOURCE, having been compiled to produce
OBJECT code, can now be executed, subject to any malfunctions
which might be encountered dque to the above mentioned errors. A

student activates a remote console, signs in, calls up the pro-

gram by name or number, and he is off and running. This is the EXECUTION

-18-—-

phase. In a time-sharing system, execution can be going on in
several different parts of the OBJECT MODULE simultaneously, or
at least switching back and forth so rapidly that it seems simul-

taneous to several individuals using the system at the same time.

STUDENT DATA SETS For each terminal in use, & pertion of
the computer's disc storage must be set
aside for keeping a record of where exe-

cution is at any particular moment, for that particular terminal.

It must also contain records pertaining to that user's entire

terminal session: various scores and tallies, saved responses,

etc. This reserved section is called a "student data set."”

If the system permits users to sign off and to sign back on
at a later time without having to begin all over again, it must
keep a record of the "restart" loeation, plus all the scores and
tallies left over from the previous session. Under this arrange-
ment the student data set is stored eway on disc during the time
he is away from the terminal.

The general arrangements for "start" and "restart" are touched
upon in Part IV, but the actual implementation will vary from in-
stallation to installation according to the design of the local

monitor system.

REVISION An existing OBJECT MODULE can be revised,

or "updated," by submitting a revised SOURCE

program to the COMPiLEﬁ. In the course of
recompiling this code, the COMPILER will cobliterate the pre-existing
OBJECT MODULE, unless a different area of disc storage is used for
the new material. If the original SOURCE is available to the system
on tape or disc, revision can be accomplished by using one of the
utility programs provided by the IBM 360 Operating System. This
permits changing certain card images recorded on the tape or dise,
provided they have been numbered sequentially in the first place,
then ordering the revised tape to be read (as SOURCE) into the system.

. R4

-19-

e e 3

S5TATS LABELS

LEY

OBJECT CODE LISTING (Reduced)

mall frame.

ut

CCHPILER

STATEHERT

£12/7037491 [INSTITUTE OF LIBAARY AESEARCH

PAGE L2 _ ____

TTRZ

&98 uNiT2
699 umITiz

100

1013 ELERFY Y

a
71 MOAEQUN
H

STAYE LABELS

726
721
122

L L P AT 3 A A I v ray

L L Ry T T

LA L ATV Y AT ETTY. -

m
<

UNMITZz FA;
UNITZZ: % & UNIT MICROFCRP IS5 CNE WHICH CONTAINS A SINGLE DOCUMENT, UNLIKZ ROLL

PICROFORF {rICHCFILMI wrICh MAY CONTAIN SEVERAL DOCUMERTS ON ONE ROLL,; OR REEL, .

EACH UNIT MAy BE LABELLED, INDEXED: STORED. COPFIEQ: OR TRANSFERRED ID & USER IN
OEPENDEMNTLY CF ahY [THER OCCUMENT. SO UNIT WICROFCoM [€ SPECIALLY WELL SUITED FOD
R CISSEMINATICH CF TECHMICAL LITERATURE, WHICH [5 USUALLY PUBLISHED AS SEFARAYE
BCCUMENTS IN THE FCAM CF JCLANAL ARTICLES OR DOCUMENTS GF SIMILAR i ENGTH.// OO
E5 THIS EXPLAIN THE TERFP ACEQUAYELY FOR YOUZ:

5 *STORA" = “ARSWERS; e e e e,
5 "PAOBY® » "PRACHY® —[]
S "LNITY® = WUAITY" — 1o}
uMiT.a: a3
L BESITs
[

Ni
1F YCOU ARE IN DOURT ABOUT ARY OF THE OTHER TERME, DONI'T HEXITA
E 70 ASK.

LY TR

3
ROREQUNT W IK THAT CASE, ME WILL PASS TGO THE MEAMING OF § -
T "FICACY® » 1]

1
wikC) "NiCAOX®|
J RETOUR}

£z
1 =CPAQY® = [
L
k{NCT "ORAQK®y

BIscuys COPPILER 112703/69) INSTITUIE OF LIBRARY RESEARCH

3 1A TVTEAENT
J RETGUAE

H
1 mAPERY® a 1g
»

]
wiNO} “APERESg
4 RETCLAJ
E3
1 "OISSEY™ =
Hi
R{NC) ROI3IEX";
4 RETCURy
£
U NEGAT
4]
W RATHER TrAN SFERD WORE CAI TIME ON IT NOW, | SUGGEST THAT YOU &ITHER
SIGN OFF AND SEEK Ouf Al INSTAUCTOR, DR TYFE "Sspassimr sap I wiLg GO ON YO THE
HERT QUESTION.:

3/4/%e8%58

371718699
-...37/772+700
3/7/73=701
3/ T74aeT12
A7¥/5=703
3/ T/6mT 0N
3/171=T
. ¥MT/78=Tce v,

A 179=707

Mi¥1a=T10
- 3T/130 711 [
1/ T/1axTi2

A/17¢=718
A/L/T=71%

PAGE 13 . .. -

¥iR

~

4/1/8=T20

- &/ls9=T2) R
A/1710=T722
4/1711=723
Rfl/12a724
471713=F25
Af1/14=T28
A71/715+727
4f1/16=T28
4717172729
4F1/1R=T30
4/1/719=F11
4#/1/720-732
4/71721=733

4/1722aT34
AFl/7Z3=718

4 LRIT. A

El &/1/242736

3C Pass: .. - . — %/1725=737 —_
1 4717262138

ALL RIGHTa BLT PLEASE GETV CLARIFICATION AT THE FIAST OPPORTUNITY:I
J MNEXTFR;

12
5C SIGN GFF, OLIT;
Hy

» YGU ARE NOW SIGAED OFF,f
4 ENDI
F3
k BEG PAROCHTE

4 UhIT.AG
RETOURS Ej

47172T=T739
4717288750
4F1729=T41
&/1F30=742
4/1731=743 |

ERIC

Aruitoxt provided by Eic:

p
B
d
b
3

L P

PART II - DISCUS COPERATIONS

OPERATION CODES A list of the several DISCUS OPCODES
which govern execution of program

statements follows:

Long form Short form ‘Bee page
WRITE W 22
WRITE (NF) W(NF) 30
WRITE (ND) W{ND) 31
ANSWER A 3k
ANSWER (NF) A(NF) 39
SCAN sC ho
DEFINE (A) D(4) 56
DEFINE (C) p(C) 56
SET s 5T
TEST T 62
MATCH M 68
FATL F 68
END E 68
JUMP J 69
BLOCK B 77
USE u TT
FRAME FR 79
NOTE N 8h

There is no difference in operation between the long and
short forms of OPCODE. Until one has become thoroughly
habituated to working with DISCUS, the long form is recom-
mended, because it mekes printed listing of qqmpiled pro=
grams somewhat easier to read.

The DISCUS compiler automatically assumég that any
of the above forms is in fact an OPCODE if it is preceded by

a colon (marking the end of a preceding DISCUS lsbel),
with any number of intervening blanks;

a semicolon (marking the end of a preceding DISCUS
statement), with any number of intervening
blanks;

nothing at all (i.e., the beginning of the program);

and is followed by a blank. No special punctuation or other

i) 25 g D s e ')

character is required to indicate its status as an OPCODE,
and there is no danger of a properly positioned OPCODE being
interpreted as a label,or as text to be displayed:

WRITE RIGHY;

will cause

RIGHT
to appear on the CRT screen, provided the last non-blank character
preceding "WRITE" (if any) is a delimiter (i.e., either a colon or

a semicolon.)

WRITE or W A CRT screen can be "written" in ocne of
two ways: through execution of a pro-
grammed WRITE statement by the computer,

or by & student inputting characters at his terminal's keyboard.

A typical display will consist of a block of programmed text, fol-

lowed by an arrow or carat indicating the starting position of

keyboard input to come, and a cursor to indicate the position in
which the next keyed character will appear.
Before the terminal-user types any characters, the screen may

look like this:

g —
ARE YOU READY?

b

WRITE text-

that system is
waiting for input

Curso

i

I et kb T

Aol

O

ERIC -22—

s
po AP

O

ERIC

Aruitoxt provided by Eic:

After the terminal-user types characters, but before he presses

the "send" button. the screen might look like this:

ARE YOU READY?
>YES_

There are three forms of WRITE commands governing WRITE
statements. Their form is independent of the purpose of
the text to be written: any one of them can be used for
conveying didactic text, for posing questions, or for res-
ponding to terminal inmput. Not all WRITE statements coded
by the programmer are actually displayed in a particular
terminal session. They are used selectively, depending
entirely on the path which execution takes on that ocecasion.

A simple WRITE or W writes the screen from the top,
after erasing all previous display material. It continues
until the end of the statement, or until the end of the screen
is reached, whichever happens first. In the latter case,
the overflow is saved until the terminal uéer presses his
"send"¥ button. This action is treated as an impromptu
WRITE command, the screen is erased, and the remainder of
the WRITE statement's operand (i.e., the text subgect to that
WRITE command) is displayed.

End-of-~line formatting is automatically performed; that
is, no word will be started that can't be finished on that

same line.

¥Or other designated signal, e.g., "interrupt" or "attention,
dEPendlﬁg on the kind of terminal in use.

<&

-

B LN e 1 i i 4

Examples
Statement - WRITE ABSOLUTELY RIGHT!!;

Result

ABSOLUTELY RIGHT!!

Statement -~ WRITE THE INIQUITY OF OBLIVION BLINDLY
o SCATTERETH HER PQOPPY.;

(Throughout this manual we use an "example

screen' with a line-width of 27 characters.)

Result -

THE INIQUITY OF OBLIVION
BLINDLY SCATTERETH HER POPPY.

A line break may be forced at any point, inside or outside
of a word, by inserting a slash (/) in the text. The slash

is not displayed. Thus:

—2ha

<3

EXTENER

T Sl L o TR gl

o i 07

Statement - WRITE AN ELEPHANT IS A/MARSUPTAL/MAMMAL /MASTADON. ;

Result

AN ELEPHANT IS A
MARSUPIAL
MAMMAL

MASTADON.

Formatting within the line can be accomplished by inserting
blanks immediately after the slash:
Statement -~ WRITE AN ELEPHANT IS A/bbbBMARSUPIAL/
bhbhbMAMMAL /bbbEMASTADON. ;

Result -

AN ELEPHANT IS A
MARSUFPIAL
MAMMAL
MASTADON.

(Note: the b symbol is used only for explication herein, when
necessary to emphasize the presence of blanks. It is never en-
coded as such. In keypunching, the space bar actually specifies

blanks, in WRITE text.)

30
=25~

g" 5,

o By b i L bt e T

The!slash is a 'rese.vsd character" in DISCUS. In a WRITE
statement it always means "'go to the beginning of the next line,"
(a) it is identified a. & literal® by single quotes
precedingband followi-z it, or
(b) it is contained in a quoted variable (discussed
on page 55).**
Two slashes (//) mean "go to the beginning of the next line,
then go to the beginning of the next line after that," having
the effect of a double space. Any number of blank lines may

be created in this manner.

Statement - WRITE HERE IS A TRUE'/'FALSE QUESTION//1'/
'2 LEAGUE = 1 1'/'2 MILES:

Result -
. . HERE IS A TRUE/FALSE
Automa?icrllne QUESTION
break

.] 1/2 LEAGUE = 1 1/2 MILES
Forced line bresk, 1/ /

and double space

Delimiting semi-
colon is not
displayed

The single quote is also a reserved character. Like the slash, it

must be specified as a literal if one desires that it be written on

the screen, but to do this we simply double it, rather than sur-
rounding it with single quotes: Thus '! , not '"! L REE

¥Definition given on p.117.
¥¥For the moment, these exceptions need not concern the reader.

¥%#%The DISCUS COMPILER always looks for pairs of single quotes. A
good way of checking coding is to make sure that the total number
of single quotes in a series of statements is an even number. The
compiler will try to turn whole pages of source programming into
a literal, following an odd-numbered single quote!

"1

Statement - WRITE FELLINI''S 8 1'/'2;

Result I
FELLINI'S 8 1/2

Three other reserved characters need to be considered:

~ +the colon, which normally acts as a label delimiter

n 11 " A i 13

- the semicolon, statement

— the double quote, which normally surrounds the label of
a variable whose contents are to be used at that point.

As with the slash, their special quality is suppressed by sur-
rounding them with single gquotes; they will then be displayed as

literals.

Statement - WRITE DON''T TRUST YOUR MEMORY';' WRITE IT
DOWN': '/bbbb ' " LILLIOM'"' - MOLNAR;

Result - e N —

-_— DON'T TRUST YOUR MEMORY;

WRITE IT DOWN:
"LILLIOM" - MOLNAR

If, in the example immediately preceding, the sgingle quotes had
been omitted from around the semicolon, it would have been tresgted

by the DISCUS COMPILER as & statement delimiter:

Q | 32

Result - S . _ e
DON'T TRUST YOUR MEMORY

Followed by - f
IT DOWN:)
"LILLIOM" - MOLNAR {
[
If the single guotes had bee.. omitted from around tﬂéidéubie guotes, %
the compiler would have sear:hed fruitlessly for a variable called g
LiLLIOM. (Or if they had been omitted from around the colon, the %
compiler might try to treat IOWY as a label - but since DOWN is not %
immediately preceded by an active semicolon, the compiler would %
give a diagnostic message. §
It is possible to economize somewhat in the use of single j
quotes for suppressing the special nature of reserved characters,
because everything enclosed within a pair of single quotes be-
comes a literal. Thus both

Statement - WRITE 1'/'2':'2'::'CUP':'QUART
and

Statement - WRITE 1'/2:2::CUFP:'QUART;
have the same

Result -

1/2;2;:CUP;QQART

Normal end-of-line formatting is not affected by the above device,

even if a line break occurs within the string surrounded by single

gquotes.

WRITE(NF) or W(NF)

Statement

Result

This OFCODE causes the operand which
follows it to be displayed without
end-of-line formatting.

WRITE(NF) THE INIQUITY OF OBLIVION BLINDLY
SCATTERETH HER POPFY. :

INDLY SCATTERETH HER POPFY.

All other conditions are the same as with plain WRITE.

-30-

B bl o o

e e e Aok

WRITE(ND) or W(ND) This OPCODE causes its operand to be
displayed immediately following the
preceding WRITE operand, without first

erasing the screen. If the last preceding write statement

has carried a WRITE opcode, end-of-line formatting will continue.

Statements - WRITE THE INIQUITY OF OBLIVION BLINDLY
SCATTERETH HER POPPYSEEDS.;
WRITE(ND)E....PLEASE IDENTIFY AUTHORSHIP
AND TITLE.;

Result -

THE INIQUITY OF OBLIVION
BLINDLY SCATTERETH HER
POPPYSEEDS.....PLEASE
IDENTIFY AUTHORSHIFP AND
TITLE,

If the last preceding write statement used a WRITE(NF)
opcode, the WRITE(ND) result will be unformatted.

Statements - WRITE(NF) THE INIQUITY OF OBLIVION BLINDLY
~ SCATTERETH HER POPPYSEEDS.;
WRITE(ND)PLEASE IDENTIFY AUTHORSHIP
AND TITLE.;

Result -
- THE INIQUITY OF OBLIVION BL
INDLY SCATTERETH HER POPPYS
EEDS.....PLEASE IDENTIFY AU

THORSHIP AND TITLE,.

The WRITE(ND) OPCODE is especially useful for displaying

blocks of text simultaneously in smooth., consecutive format.

-

%
E]
]

It ean alsoc be of service to the coder who undertakes the
revision of a long statement already keypunched. 3Suppose
an author or coder decides to remove a sentence from the
middle of a 1000-character WRITE statement. If only the
latter part of the statement is repunched, an unsightly gap
in the text would oeccur, unless the sentence happened to be
precisely 80 ckaracters in length (which would allow him
simply to remove the one card.) His alternative, afforded
by the WRITE(ND) opcode, is to terminate the statement at
the cut and turn the remainder into a WRITE(ND) statement.
In miniature:

Statement - WRITE OATS, CAULIFLOWER, PEAS, BEANS, AND
CABBAGE GROW;

“Result - P——— — — .
) OATS, CAULIFLOWER, PEAS,
BEANS, AND CABBAGE GROW

(Example continued on next page)

If we were simply to substitute blanks for CAULIFLOWER, the
display would lock like this:

" 0ATS, ’ PEAS,
BEANS, AND CABBAGE GROW

correctible by:

Statements - WRITE 0ATS, ;
WRITE (NF) PEAS, BEANS, AND CABBAGE GROW, :

Result - 0ATs, PEAS, BEANS, AND
CABBAGE GROW.

If WRITE (ND) text exceeds the remsining capacity of the screen,
as much as can be displayed will be, and the remainder will be
At this point it is suggested that the reader turn to the

exercises in Part VI (page 1L).

P WA

O

ERIC

Aruitoxt provided by Eic:

ANSWER or A When ANSWER or A is éncountéred during

execution, the arrow or carat inviting
input is added to the text of the last

WRITE statement, and the computer goes into "wait state."

(Actually it is the ANSWER opcode which forces the preceding

WRITE operand out of the display buffer and onto the screen,

but this is a technical point that need not concern us at

the moment.)

While the computer is in the wait state, all processing is
suspended, and in fact nothing the student types on the screen
will be considered by the system until he presses the "send"
button. When he does, the program causes the computer to read
off the characters he has typed and to store them one by one in
a special area of computer memory which the DISCUS system sets
aside as an "answer field." If he has typed more than 250 char—
acters before pressing "send," all the excess is lost.

The ANSWER statement may be labelled in order to provide
an address to jump to during execution, but the label is never
used to refer to the contents of the ANSWER field. These
are called out and displayed, or transferred to other locations

simply by referring to "ANSWER".

Example

Statements - WRITE A SINGLE QUOTE ('') IS CALLED A(N)
WHEN IT IS USED IN A CONTRACTION. ;

ANSWER;

Suppose any incorrect answer is to be quoted back to the
user, and in a particular case he has typed the word "econ-

tractor." (next page)

a9
~34-

Statement - WRITE NO, "ANSWER" ISN''T THE RIGHT ANSWER.;

Result -

NO, CONTRACTOR ISN'T THE
RIGHT ANSWER.

(Example continued on next page)

40 S

or better yet

Statement = WRITE NO, 'V'HWANSWERY'M! ISN!''T THE RIGHT
ANSWER. ;

Result -

NO, "CONTRACTOR' ISN'T THE
RIGHT ANSWER.

"ANSWER" causes only the current contents of the answer field
to be displayed. In order to store an answer for future
reference, it must be transferred to a labelled variable by

means of a SET statement (page 57 f£f.).

Note that the ANSWER statement itself, in the example on the

preceding page, needs no operand. This is usually the way
it is encoded, but when the programmer wishes to supply
elements of the answer in order to influence the student in
some way, he can do so by inserting them as operand in the

ANSWER statement, thus:

Statements - WRITE WHAT ABOUT '"LIQUID™ AND "FLUID"'?/;
ANSWER THE TWO WORDS ARE ;

WRITE DO YOU REALLY THINK THAT "ANSWER"?;

(to be used if the answer is determined
to be wrong.)

a4 o

-36~

Resp;; -

Before student starts
typing:

After typing but before
" él‘ld"

After "send"

WHAT ABOUT "LIQUID" AND
"FLUID"?

>THE TWO WORDS ARE __

WHAT ABOUT "LIQUID" AND
"FLUID"?

>THE TWO WORDS ARE SYNONYMS

|
(
.

Do YOU REALLY THINK THAT
THE TWO WORDS ARE SYNONYMS?

RN

EERIE ARt

The foregoing device is useful in two different ways. (1) It
permits giving hints outside of the basic instructional block,
and these hints perform duty as reinforcers:
Statement - W ONE OF THE MOST DREADFUL POEMS OF THE
NINETEENTH CENTURY WAS WORDSWORTH''S;:
A ""'GOODY BLAKE AND;

©) W "ANSWER"'"'IS CORRECT.:

(to be used if student answered "Harry Gill.")

and () W NO, HE DIDN''T WRITE ANYTHING CALLED "ANSWER"'"'.;
(to be used if he answered something else.)

"GOODY BLAKE AND HARRY GILL"
IS CORRECT.

NO, HE DIDN'T WRITE
ANYTHING CALLED "GOODY
BLAKE AND RHUBARB".

(2) It permits pre-structuring an answer in such a way that

it can be guoted later with fair assurance of a grammatical

fit .

ANSWER(WF) or A(NF) A(NF) operates in exactly the same
way as the basic ANSWER opcode, ex-
cept that the answer is expected

at the end of the last line of displayed WRITE characters,

instead of at the beginning of the next line below and no

carat appears:

Input appears
here -

or sentence-completion gquestions are involved. It does not,
however, offer a means of positioning the carat within

WRITE text, as might be desired in order to give realism to i
some types of fill-the~blank questions. A literal carat may r
be written in a WRITE statement but it will have no special

signi~icance to the succeeding ANSWER statement.

O

ERIC

Aruitoxt provided by Eic:

SCAN or SC The SCAN opcode invokes an opersation
which is fundamental to any "character-
string mateh" languasge, i.e., one which

can detect certain prescribed elements in a string of input.

These elements may be single characters, whole words, phrases,

sentences; punctuation marks, numerals, ete. A measure of such

a language is its ability to recognize non-consecutive elements,

particularly if they are in some order other than that in which

they are listed in the SCAN operand; to re-examine input as many
times as necessary in order to establish a certain profile; and

to deal with negations. A CAI language which cannot recognize re-—

sponses outside of a limited format (such as a single button-push)

is of a different type altogether.

The basic scan statement in DISCUS consists of the SCAN opcode
followed by an coperand in which the coder enters those elements
whose presence in, or absence from, student input is to be estab-
lished. Thus

SC WHITE;
working on input of

FED WHITE AND BLUE

will be satisfied, and a system condition code will be set to indi-
cate the fact. The information is typically used to dictate what
will happen next in the execution of the program.

One way of visualizing the scan operation is to think of the
operand as occupyling a moving window, one which opens onto student
text. It sweeps from left to right across the input string until
it either encounters an uninsulated semicolon (signalling the end
of the statement) or "sees" a combination of characters which match

it exactly.

40—

would be scanned-for sequen-

BLUE
BLUE
BLUE
RED WHITE|] AND BLUE
REH _WHITE JAND BLUE Match!
RED WHITE AND BLUE
RED WHITE AND BLUE
RED WHITE AND BLUE

Actually what happens in DISCUS is that student input, pre-
ceded by a notation indicating its length, is stored in a field
called "ANSWER" when the "interrupt” or "send page" key is pressed.
The message is placed on a rack, as it were, where it can be ex-
amined in detail by the program. Only the input is thus transferred.
Neither the ANSWER opcode nor the end-of-statement semicolon is
moved to the ANSWER field.

The operand of a SCAN statement specifies the items to be
looked for in the answer, and the order in which they will be
checked. It is important that the DISCUS user understand how this
takes place. What really happens when a SCAN statement is executed?

Before launching into the discussion, it will be well to con-
sider the definitions of "word" and "literal" as given in the
Glossary:

WORD A WORD is a string of characters that does

not include imbedded blanks, special charac-

ters, or symbols, and is surrounded by
blanks, either explicit or implicit. WORDS

used in SCAN statements constitute elements
against which a user's response may be compared.

LITERAL A LITERAL is a string of characters, punctuation

not used in a special code sense. In order to
be treated as a LITERAL, such a string must be
surrounded by single quotation marks. ZFor use
of these marks themselves as literals, see
example, page 26 .) Inclusion of a character in
8 LITERAL wzuppresses any special characteristic
it may normally possess in the DISCUS system.

a6

~h1-

A word is commonly recognized as a word, in written or print-
ed communications, if it is preceded by one or more blanks and
followed by one or more blanks or punctuation marks. Because this
convention is almost universally accepted in the Western world, we
are able to identify individual elements as elements quite rapidly,
prior to interpreting them. Conceivably we could dispense with

this service. For example, one is able to extract meaning from
BREAKGLASSINCASEOFFIRE

thanks to some impressive computations of which the human brain is
capable. But it is much easier and faster to read (i.e., scan

identify, recognize) the message given in conventional form:
BREAK GLASS IN CASE OF FIRE

Blanks really represent non-content-bearing bresks in the informa-
tion stream, and although such breaks can be almost as useful to

a computer as they are to humans, they are useful to it in a dif-
ferent way. A computer deals with blanks as definite entities,

not as just vague nothings on either side of something meaningful.
Perhaps the best way of defining "WORD" acceptably for both com-
puters and humans is to say that it is a blank-less element between

two blanks.

SCANNING FOR WORDS The DIECUS system carries out the follow-
ing steps in scanning for a word specified
in a SCAN operand:

Step 1. The first word in the BCAN operand is identified.

Example: In SCAN THANE CAWDOR; "THANE" is considered
to be the first word, because it is the first
element not containing a blank and not en- .
closed in single quotes.

Stég 2, The first word is moved to a location we refer to as 'the
window." Enroute, it is furnished with a beginning blank

and an ending blank.
SC THANE CAWDOR:

S— "window"
oTHANE y,

Step 3. The contents of the window are compared with the contents

of the answer field, starting with the first string of

equal length at the extreme left end of the ANSWER field,
and moving one position at a time toward the right.

Suppose the ANSWER field contains

[bTHE THANE OF CAWDORB|
and a length notation off to one side,
(The beginning and ending blanks in the ANSWER field

from the terminal.)

The scan begins. In the fifth position of the "window",
the contents of the window match exactly that which it
sees in the ANSWER field.

If the ANSWER field had contained, instead, BTHE THAIN OF

CAWDOR®, the comparison would have proceeded all the way to the
end of the ANSWER field, and a failure would have resulted for
the SCAN operand in gquestion.

Since we found a match on the first word in the example, we
proceed with the next step, which is the same as Step 1 shove,
using the second word in the SCAN operand. Again, the word is
furnished with a blank fore and aft, and a notation is made that
we are in fact dealing with a word. However, this time the com-
parison begins not at the beginning of the ANSWER field, but at
the ending blank of the previous successful comparison:

[BTHE THANE OF CAWDORb)]

(match)

[

(starting position) GECAWDORE)

C (mstch) ECAWDORE

Note that the ending blank in A overlaps the beginning blank in B.

I\ o]

This overlap can occur only if the string being compared is a word.

If the ANEWER field had contained simply BTHANE CAWDOR® both the
first comparison and the second comparison would have succeeded,
in their first positlons, even though both seem to take advantage

of the same blank in the ANSWER field.

ERIC - 48 f

Aruitoxt provided by Eic:

e S R e vt g . W

SCANNING FOR The DISCUS system carries out the following
LITERALS steps in scanning for literals specified in

a scan operand:

Step 1. The first literal in the SCAN operand is identified.

Example. In SCAN 'PAR' '"WER';, 'PAR' is considered
to be the first literal, because it iz the
first element enclosed in single gquotes.

Step 2. The material enclosed between the single quotes (but not
the guotes themselves) is moved to the window. It is NOT
furnished Wlth beginning and ending blanks.

8C 'PAR' '"WER';

e
PAR

\?#f_ AR |
Step 3. The contents of the window are compared with the contents
of the ANSWEP field.
(Assume ANSWER field contains)
BPARROT FEVERb

Match is obtained in the second positicon from the left.

Step 4. Repeats Step 1 (et seg.) except that the comparison begins,
with the second literal, at the precise boundary of the
flrst

bPARROT FEVEERE
R
PAR

It is immaterial, in scanning for literals, whether the
matching characters occur in the ANSWER field as word beginnings,
word middles, or word ends. By the same token, literals may over-
lap more than one word in the ANSWER field; i.e., may include blanks,

specified punctuation marks, ete., Thus

SC 'GT. BRIT.--HISTORY--19TH CENTURY ':
will match the following ANSWER field:

I THINK IT SHOULD BE GT. BRIT.--HISTORY--19TH CENTURY.

It will not match a variant such as

I THINK IT SHOULD BE GT. BRIT--HISTORY--19TH CENTURY.

_hlg&

Such a SCAN statement is of course very rigid, whereas
SC 'PAR! 'VER',

is quite the opposite, matching such things as "PARROT FEVER" ,
"PARLEY FOREVER", "SPARE EVERY TREE", "I'VE PARTED FROM VERONICA,"
etc.

We can conclude that literals do not, in themselves, make
the SCAN operation any more rigid than do words , provided they
are of limited length and provided they avoid gpecifying punctu-

ation marks and internal blanks.

SCANNING FOR WORDS Although word elements and literal ele-—
AND LITERALS INTER-

MIXED ments in a SCAN operand are processed

somewhat differently, there is nothing
to prevent both types being used together in any combination that
best suits the programmer's objective. For example, suppcse he

wants to find out if student input contains the words

BON HOMME RICHARD

or

BUNHOMME RICHARD (either version being
acceptable)

In such a case BSC 'BON' 'HOMME' RICHARD ; would turn the trick.
Or suppose he wanted to detect the name
DIONYSUS OF HALICARNASSUS
without being fussy about the spelling. He could specify
SC " Dpro* 'US ' OF ! HAL' 'sUS ':
Note that by inecluding blanks in the literals, the programmer effec-
tively specifies their position as word-beginnings or word-ends.
He could have specified middles:
SC 'ONY' OF 'CAR';
but with some lose of Precision, in this particular case.
In both of the foregoing examples, the SCAN elements are pro-
cessed in the order in which they appear, regardless of whether

they are words or literals.

o

O

ERIC

Aruitoxt provided by Eic:

PUNCTUATION MARKS Before student input is placed in the

iggEEEECIAL CHAR- ANSWER field, the punctuation marks
s+ (Y71, . " are replaced with
blanks.
I QUITIIII! becomes I QUIT
1, 2, 3 becomes i 2 3
DON T remains DoN'T

If a particular punctuation mark or special character has,
in the coding., been specified as a SCAN literal, the program
will go back and restore it to the ANSWER field, if in faect it
was typed by the student.

It should be emphasized that none of the conventions for
use of single quotes, double éuotes, colons, slashes, or semi-
colons which apply to encoded SCAN or WRITE statements affect
the student's use of these marks in his input. For example,
he doesn't need to type DON''T in order to have it recognized as

DON'T.

ADDTITIONAL EXAMPLES Let us see how a scan operation involving
more complicated strings would work.

Suppose we want to scan for Don't go; stay.

We would encode this in the SCAN statement as
SC DON''T GO '; " STAY;

Note that we have suppressed the special nature of the single guote
by doubling it, and of the first semicolon by insulating it with
Bingle quotes (exactly in the same way as they are treated in WRITE
operands when they are to be displayed literally (see pages 27-28}).
The last character, i.e., the semicolon, remains active in its
usual role as an end-of-statement delimiter.
‘The above scan operand will match student input only if

the operand contains

DON'T

GO

s

and STAY in that order.

~-L6-
5% 1

O

ERIC

Aruitoxt provided by Eic:

The input may be festooned with all kinds of other words and marks
without spoiling.the match:

HALT---DON'T GO AWAY MAD; PLEASE
STAY, WON'T YOoU???

Obviously the more we demand in a SCAN operand, the less
chance it has of succeeding across a given set of answers, "all
expressing the same idea, but expressing it somewhat differently.
S50 we try to remove as many constraints as possible, in order to
improve the likelihood of matching answers which contain the essen-

tial elements.

SUBOPERANDS Often the coder will want to provide for

a number of acceptable alternatives con-

veying similar meanings, any one of which
will attain MATCH. In other words, he would like to perform a
basic "OR" cperation, as if he were testing the answer against
a whnle series of scans, each of which started afresh at the
beginning of the ANSWER field. He cannot do this by stacking
SCAN statements.

sC 6
followed immediately by

SC S8IX
will not lead to a match of 6 in the student input, because the
gecond BSCAN statement resets whatever condition code was set by
the previous SCAN statement.

In order to describe how alternatives can be combined eco-
nomically in s single SCAN statement, we need to deal with subord-
inate parts of SCAN operands as modular entities. It is convenient
to call these "suboperands" and define them as: ANY STRING, WITHIN
AN OFERAND, THAT IS SEFARATED FROM OTHER PART(&) OF THE OPERAND BY
A COMMA OR . ; "OR"-BAR (BOTH MEANING "OR"), OR BY AN AMPERSAND
(MEANING "AND"). '

Example: 7cperan§
sc §5§§j¥22;2% .
suboperand suboperand

=L7=
b e

Fa.F -

Operation: The program scans the ANSWER field first for CORNj; if
MATCH is obtained, it sets the condition code and jumps to the
next statement, disregarding the second suboperand. If no match
is dbtained on CORN, it re-scans the ANSWER field for MATZE. If
match is obtained, it sets the condition code accordingly. Execu-

tion then passes to the next statement. If neither is found., the

Example: (4 suboperands)
SC O0ATS, PEAS | BEANS | BLACK EYED PEAS;

Yor''-bars

Operation: The program scans for each suboperand in sequence, de-
sisting only when success is attained or the end-of-statement
delimiter is reached,

Two or more suboperands separated by (an) ampersand(s) will
both (all) be scanned before success is assured, match condition
code set,¥ and scan terminated. The order in which the sub-
operand elements appear’in the answer is immaterial:

Example: operand
"
sC SLEET & SNOW
! ——] ——y
suboperand suboperand
Operation: The program scans the answer field twice, first for
SILEET, then for SNOW. Match condition code is not set unless both
are found.

This permits scanning for full permutations of lists where

order is unimportant.

Example: : 8C FIRE & WATER & EARTH & AIR;

Operation: Four separate scans are performed. Failure on any one
of them terminates the operation, while success is not determined
until all four have been scanned. If every possible combination
had to be set up as a separate operand or suboperand (SC FIRE WATER
EARTH ATR, WATER EARTH AIR FIRE, etec._ _ _ .3) twenty-four of them

would be required, and the whole series would have to be pertormed

to establish the absence of one of the required terms.

, # Condition codes are explained in THE DECISION PROCESS (page 67).
Q \

Mg

Any combination is permissable:

FIRE & COLD WATER, EARTH & ATR, FISH CHIPS|
CAKES ALE: (six suboperands)
Operation:
1. 8Scan for FIRE. If unsuccessful, go to next suboperand
preceded by (1) or (,).
If successful,.......

Scan for COLD and WATER - in that order.¥ If successful,

2.
set match condition rode, Jjump to next
statement (beyond the semicolon). If
unsuccessful, go to the next suboperand pre-
ceded by () or (,)ee.....

3. Bean for EARTH. If unsuccessful, go to next suboperand
preceded by (I) ar (4)evianns
If successful.......

L, Scan for AIR. If successful, set match condition code,

skip to next statement. If unsuccessful,

go to next suboperand preceded by (1) or (,)....

5. 8can for FISH and CHIPS, in that order, with any number of
characters and/or blanks intervening. If
successful, set match condition code, jump
to next statement. If unsuccessful, go to
next suboperand preceded by (1) or (3)eevun..

6. Scan for CAKES and ALE, in that order with any number of
characters and/or blanks intervening. If

unsucecessful, go to next statement.

¥Additional intervening blanks in the answer will not cause failure
of this scan. Neither will intervening characters, as long
long as they don't adjoin either of the specified words. For
example,
COLD WATER
COLD WATER would succeed
COLD BLUE WATER

WATER COLD g would not succeed

ERIC
o e E%EE:‘”

From the above examples we can deduce a rule: namely, that

After scanning any suboperand ending with a

comma, or | success terminates the operatisn

failure goes to the next suboperand
ampersand success goes to the next suboperand

fallure goes to the next suboperand

which is preceded by a comma or "or"-bar.
semicolon terminates the operation

SPOILERS (—) In mechanies, a "spoiler" is an attach-—
ment thai reduces or neutralizes the
effect of a device, such as deflection
vanes used to reduce the lift of an airplane wing, the tinting
blended into windshield glass, the mute on a trumpet. In
DISCUS, we use the term in a more absolute sense, to apply to -

the "not" sign in a scan opsrand.

8C

will match any answer field that does not contain the word CATS.

—1CATS

sC TVCATS, DOGS;
will work as follows:
Answer field Result
DOGS ARE FRIENDLY CRITTERS Succeeds on not CATS
I LIKE CATS AND DOGS Succeeds on DOGS
I LIKE DOGS AND CATS Bucceeds on DOGS

CATS ARFE EGOCENTRIC Fails on not CATS and

the absence of DOGS.

If one changes i#s order of the suboperands to

sC DOGS, — CATS

the same results are obtained, but according to a different
progression:

DOGS ARE FRIENDLY CRITTERS Succeeds on DOGS

I LIKE CATS AND DOGS Succeeds on DOGS

I LIKE DOGS AND CATS Succeeds on DOGS

CATS ARE EGOCENTRIC Fails on the absence

of DOGS, and then again

on not CATS.

Clearly the intent of a spoiler and the words to which it applies
is best served by placing them in a suboperand shezd of a desired
element.

An important distinction must be made between the effect of
a spoiler in multi-word suboperand, and in suboperands which are

separated by ampersands. In the former, the spoiler - regardless

of its location - applies to each word in the suboperand. In the

latter case, only to the word or words in the suboperand which

contains it.

With either

sc — CATS DOGS (These two statements
sc CATS— DOGS are equivalent.)
Answer field Result

DOGS ARE FRIENDLY CRITTERS Failure

I LIKE CATS AND DOGS Failure

I LIKE DOGS AND CATS Failure

CATS ARE EGOCENTRIC Failure

I LIKE HORSES Success

sC — CATS & DOGS

Ansver field Result

DOGS ARE FRIENDLY CRITTERS Buccess
I LIKE CATS AND DOGS Failure
I LIKE DOGS AND CATS Failure
CATS5 ARE EGOCENTRIC Failure
I LIKE HORSES Failure

(Reversing the order has no effect, because both elements are
tested before scanning terminates.)
Thus if we wanted to match
I prefer Hindemith to Chaminade but not
I prefer Chaminade to Hindemith

we would encode the scan statement either as

3C HINDEMITH CHAMINADE & — CHAMINADE HINDEMITH,

S6
=5;T~

e
P

or as
sc HINDEMITH CHAMINADE & CHAMINADE — HINDEMITH,
But if we didn't care which he preferred as long as he specified

both but didn't mention the Scarf Dance, we could encode it
sC —SCARF & HINDEMITH & CHAMINADE

The "not" facility of DISCUS is a very powerful tool, per-
mitting one to pack into one SCAN statement a number of parameters
that ordinarily would require a whole series of statements, each
needed to detect a specific undesirable element before getting down
to the desired element and its alternatives.

The "=" also can be used to detect simple negation, in order

to reduce one particular risk of misinterpreting input:

Question W WHO IS PRESIDENT OF THE UNITED STATES
(if)Answer A NOT NIXON,
Simple scan S8C NIXON: (Success)

The program reaction in such a case would be exactly opposite
to the one intended. Scanning the same input with a — spoiler:
SC —WOT & NIXON, (Failure)
To cover a greater variety of possibilities, the scan would probably
be written

5C = NOT & NIXON — AIN''T & NIXON — DON'T & NIXON — NO & NIXON;

[(A Boolean expression such as
(= NOT, — AIN''T, — DON''T, — NO) & NIXON

is not within the SCAN capébility of DISCUS as currently implemented.]
The same device could be used to handle double or even triple

negatives in cases vwherein these occurred as separaie words, but i

simple reversals of meaning do not occur consistently enough in

English to make this a very productive gambit. A really sophisti-

cated "not facility" should be able to unravel negative affixes as

well as stand-alone forms of "not", so that the true polarity of é

meaning in a sentence could be established.

:
3
i
*
2
E]
2

EXPANDING CONTENTS We have seen how DISCUS scans for elements
OF VARTABLES INTO

OTHER STRINGS specified in the SCAN operand. Let us now

consider scansion for elements which are
only referred-to in the operand.
The contents of a variable statement may be referred to by

another statement only through its address, i.e., its label. Thus
WRITE OH, THAT TEIS T0O, TQO SOLID "ICECUBE'" WOULD MELT;
writes the following on the screen
OH THAT THIS TOO T00 SOLID FLESH WOULD MELT

only if somewhere in the program there exists a variable whose
label is ICECUBE: and that contains the single word FLESH. If
ICECUBE contained a laundry list, the whole thing would be dis-
played between SOLID and WOULD.

With a WRITE statement the contents of a variety of labelled
data may be thus expanded into the operand. ©Since the ANSWER field
is a variable, its contents may also be called forth at any time,
but this should be done by referring to "ANSWER" rather than to a
label which mey have been attached to the ANSWER statement itself
in a particular frame.

Thus WRITE IN SAYING'"' "ANSWER" '"', "NAME'", HAVE YOU
CONSIDERED THAT "HORSES"?; would be displayed as

.-

/" TN SAYING "I LIKE HORSES",

{ ROBERT, HAVE YOU CONSIDERED

! THAT HORSES ARE RELATIVELY
INEFFICIENT?

provided I LIKE HORSES is contained in the answer field,

ROBERT is contained in a variable labelled NAME,
and HORSES ARE RELATIVELY INEFFICIENT is conidined in a
variable labelled HORSES.

. 28

~53~

5

i

étraight text may be set into a variable and left unchanged;
it is still possible to scan for it - remembering, of course, that
the chances of obtaining a match on exact text are fairly silim.

At any given moment a variable may contain either a number
(expressed as an integer) or a string of characters. The former
might be scanned-for in the answer field if we wanted to know if
the student had the right answer to a simple arithmetic problem
he himself had constructed. The latter might be scanned for as a
standard element expected to occur in a great many responses, or
to check a unique item supplied earlier by the student himself.

The entire length of a character variable expanded into a
SCAN operand is treated by DISCUS as a literal. This means that
imbedded commas, or-bars, and ampersands do not serve as logical
operators in the SCAN statement.

In a variable character string consisting of A,B,C the commas
will be passive if the string is used in a SCAN operand.

So in 8C @, "cC",X, where CC is the address of the above
string the operand becomes

)63, A,B,C, X

active passive active

and match will be obtained only if

Q or
A,B,C (including the commas) or
o .

is present in the answer field.

‘ Further discussion of the SCAN statement must be deferred
until Part III, after the remaining DISCUS OPCODES have been
covered, in order to give the reader a better idea of how they

behavz as part of the total system.

53¢)
~5L—

VARTABLES There are no standard constants im-
bedded in DISCUS. For example "pi"
does not automatically conjure up 3.1416.
If needed in a particular program it would first have to be sub-
mitted as part of the source. For convenience we would establish
it as a "variable," even though we probably wouldn't plan to make
any changes in it.

A variable can be thought of as a box with a label on it,
into which we can stuff things, later examining or copying
their contents, adding to them, or emptying them out entirely.

We can be quite sure of the exact contents of the box, provided
we put them there in the original coding and provided we allow
no change to occur during execution.

More frequently, however, we will want them to play a more
dynamic role in on-line operations. At any given moment during
execution, only the computer will know exactly what is in a vari-
able used in this way. Neither our source program nor the object
code listing will show it.

The only way to gain access to a variable, specifically to its
contents, is by referring toc its label. In meking such references,

the label must always be surrounded by double guotes. Thus
WRITE YOU HAVE COMPLETED "X" PROBLEMS ;

will cause display of

YOU HAVE COMPLETED __ Whatever is con-

PROBLEMS tained in the
variable labelled
Hx.ﬂ

~55-

QOther uses:

Statement ~ 4 "X";

Result -~ (Causes the contents of X to be displayed following
the carat. After the student types his answer
and pushes the "send" button, the contents of "X"
will be entered in the ANSWER field slong with his
input.

Statement - SET X" = !yn.

Result - Causes the contents of X to be made identical
with the current contents of Y.

Statement -~ TEST '"X" = 2;

Result - fCauses the contents of X to be tested to see if

they are egual to 2.

(SET and TEST statements are discussed in detail in the following

pages.)

DEFINE(A) or D(A) To create a DISCUS variable, it must
DEFINE(C) or D(C) first be defined, either as an arithmetic
variable or as a character variable. And

a label must be aésigned to it at that time.
ADDO: DEFINE(A); or ADDO: D(A);

creates a numerical variable with a caparity from zero to over
+ two billion (to be exact, an IBM/360 full word integer).

This veriable will be accessible only through its unique la-
bel -~ ADDO.

CHAT: TDEFINE(C) 30; or CHAT: D(C) 30;

creates a character variable whose label (or name) is CHAT and
whose maximum length will be 30 characters. We can specify as
few as one (zero would be meaningless,) or as many as 255, but
in any case some number must be stated, so that the compiler
will know how much space to reserve for it.
Neitlwer of these two forms of DEFINE initialize the name variables.

Nothing is put into either box. To do that a SET statement is used.

&t

SET or S SET uses the basic programming device of al-
tering the contents of a variable of a fileld
by restating its contents with some change,

if a change is desired. Using the examples on the preceding page,

if it were desired to start ADDO off containing 10, we would simply
follow the DEFINE statement with

SET MADDO" = 103 or S "ADDO" = 10;

(the SET statement does not have to follow directly - there could
be a long list of DEFINEs followed by a long list of SETs.) After
thus "initializing" ADDO, we can change its contents directly
by restating them to be another number or to be the current quan-
tity plus or minus something elée, or divided by something, or
multiplied by something, etc., but in any case the quantity to
the right of the equal-sign - which is never omitted - is always
the new value of that variable.

If we desired that-CHAT begin its career with the letter 2

as its contents, the statement
SET YCHAT'" = '27"; or S Y"CHAT" = 'Z';

would take care of the matter. Subsequent changes are effected
along the same lines as with arithmetic variables; that is, the
contents are restated eilther completely or by adding to the
existing contents, as expressed to the right of the omnipresent
equal sign. To eradicate the coﬁtents of either type of vari-
able, one encodes nothing at all to the right of the equal-sign
(not zero, which is something different from nothing). Thus

the two variables above could be collapsed by
SET "ADDO" = ; and SET "CHAT'" = ;

(although they still exist - with null contents).

Note that the address label of a variable referred to in a
SET statement is always enclosed in double quotes. This is
consistent with the general rule that in order to refer to
the contents of a variable through that variable's label, the

label must be enclosed in double quotes.

. Bk
-57- ..

SET establishes, in a variable, a specified combination of
characters or numbers or other variables. The operation is
always performed on the variable specified to the left of the

equal-sign.

Statements ~ CUPCAKE: D(A);
- MUFFIN: D(A);

SET "CUPCAKE" =
SET "MUFFIN" = 4;
SET "CUPCAKE" = "CUPCAKE" + "MUFFIN";

Result - ''CUPCAKE" now contains the number T.
"MUFFIN" still contains the number L.

Statement - SET "CUPCAKE'" = "MUFFIN";

Result - Both "CUPCAKE" and "MUFFIN" contain &4.

Statement - SET "MUFFIN'" = "MUFFIN" + 20 - "CUPCAKE";
Result - 'MUFFIN" contains 21. "CUPCAKE" still contains k4.

The arithmetical operators are

+ add

- subtract
* multiply
/ divide

The arithmetic operations are performed sequentially, from
left to right. The results of each separate operation is pro-
gressively rounded off to the lesser integer before going on

to the next cperation (i.e., truncated).

Statement -~ SET "MUFFIN" = "CUPCAKE" * 7 + 1 / 3;
Result - "MUFFIN" contains 9, not 9.66666 or 9 2/3.

(b x 7=28; 28+ 1 =29; 29 + 3 =9 2/3; lesser integer = 9)

- -58-(5;3

The nature of the varigble to be set, i.e., the one to the
left of the equal-sign in the SET operand, determines the nature
of the operation to be performed. If it was originally defined

with a D(A), the operation will be arithmetical:

Statement - SET “CUPCAKE'" = 365 + 144;
Result - "CUPCAKE" contains 509, not 3651Lk.

If through error or otherwise there is an attempt to add non-
numeric characters to an arithmetic variable, they will cheerfully

be disregarded.

Statement - SET '"CUPCAKE" = 365 + 'DAYS';

Result - "CUPCAKE" contains 365 (not 365DAYS or 3650.)

~29="

oL

In a character variable - one defined by a D(C) statement -
no arithmetic operation takes place, regardless of whether numbers

or characters are used.

Example
Statements - PIE: D(C) 30;
S S YRPIEY = '4';
S "PIE" = "PIE'" ' AND' ' 20' 'BLACKBIRDS';
Result - PIE contains

4 AND 20 BLACKBIRDS (not 24 AND BLACKBIRDS)

Note that character strings are entered in SET operands as
literals, i.e., surrounded by single quotes, if they are entered
directly, as in the example above. If they are entered indirectly
i.e., by reference to the contents of another labelled variable,
the label specified in the operand is enclosed in double quotes.¥

If a blank is needed in order to separate two literals, it
must be specified. Hence ' AND' and ' 20' and ' BLACKBIRDS' sgbove,
not 'AND' and '20' and 'BLACKBIRDS'.

Non-literal blanks mean nothing at all in the operand:
S M"PIE" = "PIE" ! ' 'AND' ' ' 'BLACKBIRDS';
and
s !YPIE" = "PIE" r 'AND' * ' 'BLACKBIRDS';

would have identical results.

If the operand were written
s "prg" = VpIg" TAND ! '20' 'BLACKBIRDS';

the resultant content of PIE would be
LAND20BLACKBIRDS .

The SET command provides a means of saving student answers
for later user, but the maneuver must be performed before the next
ANSWER statement is encountered, since every new answer annihilates

wvhatever preceded it in the ANSWER field.

¥This follows the general rule that the contents of a labelled statement
are always referred to by specifying that label. When referring to the
contents of a variable, its name (label) must, in addition, be enclosed
in double gquotes. :

[l{fc _60- ©I

The contents of the current ANSWER field may be added to the
existing contents of a variable either shead of or following them,
or inserted between two or more specified elements. In the fol-

lowing exampls we add the student's last name to a previously-
saved first name:

Statement - WHAT IS YOUR FIRST NAME?;

; (student types WILLIAM) ‘
"NAME' = "ANSWER'";
THANK YOU. NOW YOUR LAST NAME¥ PLEASE.:
; {student types MAKEPEACE)
"NMH = IINAW" ! ! IIANSF,EVRH’.
WELCOME TO ENGLISH I, '"NAME';

Epnr k=

Result - {(contents of current ANSWER field added on the

right)

WELCOME TO ENGLISH I,
WILLIAM MAKEPEACE

In the following example we add the student's first name to
a previously-saved last name:

Statement - W WHAT IS YOUR LAST NAME?;
A3 (student types MAKEPEACE)
S UNAME'" = "ANSWER";

W THANK YOU. NOW YOUR FIRST NAME, PLEASE.;
A: (student types WILLIAM)

S MNAME" = VANSWER" ' ' "NAME";

W WELCOME TO ENGLISH I, "NAME";

Result -~ - The same -
If the original DEFINE statement for a character variable has

reserved too little space to accommodate the material which one

later tries to SET into it, the SET statement which exceeds the

¥ Assume "NAME'" has been previously defined as a character variable.

66

61—

available space does not fail altogether, but manages %o enter as
many characters as possible, starting from the left end of the

input string. The remainder vanish. This could be useful if the en-
coder wanted to throw away all but the first n characters of an
answer, but more commonly the D{C) should specify ample room for

everything expected to go into it.

TEST or T The TEST statement compares two variables with
each other, or a vafiable with a literal, and
sets a condition code* to positive if "suc-

cessful" according to the terms of the relational operator

(equals = ; greater than > ; less than < ; not — . They may

be clustered or used singley.) As with SET, the object of the

comparison is the element to the left of the relational operator.
TEST "A LU "BH;

will result in a positive condition if A is in fact greater than B.
The type of comparison is determined by the object variable.
If it is arithmetical, the second variable is dealt with as such,

if at all possible. For example, suppose the following is attempted:

Statements - CUP: D(A);
SAUCER: D{(C) 20;
] "CUP" = 10;
S "SAUCER" = 'BUTTERFIELD 8';

"CUP" > "SAUCER'";
Result - Positive

The program will compare the contents of CUP with the 8 in
SAUCER, and disregard the alphabetical characters and the blank.
If the object variable is & character wvariable and the

secohd variable is arithmetic, the contents of the latter will

be dealt with as a character string.

*¥The use of condition codes is explained in THE DECISION PROCESS,
p. 67.

—-62~

&7

Statements - X:

nyn 14 .
Yy = 1457
mnyn _ Ny r.
X" = Y"1

TEST nxm = "y, will succeed.

D
D
S X" = 456
S
S

If both variables are character variables, then the
smaller of the two is padded with blanks on the right, and a

character-by~character comparison takes place.

Examples
(Assume "Q" is a numerical variable ccontaining b
1t "R" 1" " " Tt
1" "S" 1" CharaCtEI‘ " " 'GRA.VY')
TEST "Q" = "R", will fail, because 4 is not equal numerically to 6.

TEST "R" > "S", will succeed, because GRAVY contains no number
greater than € (in fact, no number at all.)

TEST "S" — > = "Q"; will succeed, becanse GRAVY is neither greater
than nor egual to 'I''.

In the following example we test L. nother character

varigble "T" containing 'GRA':

TEST "S" = "T"; will fail, because 'GRAVY' is not the same as CGRA.

A strong similarity exists between TEST and SCAN. SCAN is
really a kind of moving TEST, which sweeps from left to right
across the variable being tested, i.e., the ANSWER field. The

SCAN relational operator - in this analogy - 1is always = .

&8

-63."»“ T

Both TEST and SCAN result in the setting of a condition code
to indicate success or failure, so that a determination can be

made a2s to what will happen next in the execution of the program.

To illustrate these operations, two examples are needed:
6 To verify the exact contents of a variable (TEST)
e To ascertain if a character variable contains one or more

specified elements. (SCAN)

(::) Suppose the student is asked to furnish the last four
digits of his social security number in order to use it as a code
number on restart. Either a character variable or a numerical
variable could be used to store these four digits, but it would
be better to use a numerical variable in ofder to éliminate

"noise". Compare:

SEC: D(A); soc: D(c) 20;

(Student types "OK. 5321") (Student types "OK. 5321")

S "SEC'" = "ANSWER"; S "soc" = "ANSWER";

Result:
SEC contains 5321

because whenever an attempt
is made to put characters |
into an arithmetic variable, i
they are automatically thrown |
|
|

SOC contains OK. 5321

avay , without affecting the

numerical entry.
When the student signs in for his next session, the system will
bring his data set out of storage. The program can then ask him
to confirm his identity by again giving the last four digits of his

social security number. Suppose this time he types "5321".

Result:
T "ANSWER'" = "SEC"; T "ANSWER!" = M5oC',
will succeed. will fail.

If SOC had been limited to
four characters by

S0C: D(C) L:

|
|
|
|
|
|
|
|
: it would contain OK.B

_ ‘61‘-69‘

and still fail. One could
check S0C immediately after
the original input to see if
it d4id in fact contain a four-
digit number, but the routine
for this is fairly tricky
and (machine) time consuming.
On the other hand
]

it would be a good idea to check
SEC immediately after the origi-
nal input to see if it contained
a four-digit number, as follows:

T "SEC" > 98989;

M;

W JUST FOUR DIGITS, PLEASE. ;
J (1label of ANSWER statement);
E; ¥

T "SECY = < 1000;

W FOUR DIGITS, PLEASE. ;*¥*

J (label of ANSWER statement);
E;

In this example suppose we have been stuffing words from

successive answers into a character variable defined as
CITIES: D(C) 250;

and we would like the program to be able to ascertain - at some
time during execution - if the variable contained either MEMPHIS
.~ CHATTANOOGA. Since TEST tests for all or nothing at all, it
won't work here. But we can use SCAN for the purpose:
(Assume we have another character variable called "TEMP" lying
around, which we can use temporarily tc store the current con-
tents of the ANSWER field while we use the ANSWER field for
SCANning something else.)

¥ ‘se of these opccdes is explained in THE DECISION PROCEE ,
i
pag= ©6T.

*¥ . -—ually, one or —iore additional tests would be needed here

to cr=ck for leading zeros, e.g., to validate a four-digit
number such as O0L3.

) 70
L65w

&

L N A S 8 el S SR A 0

S "TEMP" = "ANSWER™,

S "ANSWER" = "CITIES",

SC MEMPHIS, ' CHAT' 'GA ’;

F, ¥

W YOU HAVEN''T MENTIONED EITHER MEMPHIS
OR CHATTANOOGA.;

S M"ANSWER" = "TEMP",
Es

Or, turning the procedure around in order to detect repetitions:

TENN: Ay

- sc MEMPHIS, ' CHAT' 'GA ';

M; ¥

s "TEMP" = "ANSWER':;

8 YANSWER'" = "CITIES";

SC MEMPHIS, ' CHAT' 'GA ';

M; ¥

W YOU ALREADY MENTIONED "TEMP';
J TENN;

E;¥

W CORRECT. ;

S "CITIES" = ”CITIES” r r IITEW{PII".;

S "ANSWER" = "TEMP" ;%%
E;¥

ete.

There is no need to restore "ANSWER" at this point,
because the next input will clear it.

¥Use of these opcodes is explained in THE DECISION PROCESS:.
page 67.

#*Actually, there is no need to restore "ANSWER" at this
~cint, becanse the next input from the student will clear =Z%.

66 .
i

O

ERIC

Aruitoxt provided by Eic:

THE DECISIOX PROCESS In DISCUS, the decision process can
lead to a number of actions such as
"jumping" to another location in the program and resuming
execution at that point;
displaying the contents of a variable:
changing the contents of a variablej

"using" a section of code located at some other part of
the program;

displaying a string of text:

causing the DISCUS system to await student input;
invoking author mode (discussed on pages 137-1L0)3;
automatically terminating execution;

or simply passing execution to the next statement in sequence.

To illustrate, suppose SCORE represents an arithmetic variable which
the course author wishes to increment every time the student answers
a question correctly. Then let us imagine a successful match on the

following:
SC BATS;
As a result, we want to process the following statement:
SET "SCORE" = "SCORE" + 1;

However, before the program encounters the SET statement, we will
want to insert a proviso that it be executed only if a match in fact
djd occur; we don't want the SET statement to be'executed

otherwise. To provide for this selective treatment, a new DISCUS
statement is used, its opcode being MATCH, or M. It needs no label

or operand. It simply says to the computer, "If the current condition
code — as set by the most recently executed TEST or SCAN operation -
is‘positive, let the next operation take place. Otherwise, skip it."

So the sequence would be encoded:
,,,,, e SCAN_BATS; e e e
MATCH ;
SET "SCORE" = "SCORE'" + 1;

The same kind of arrangement can govern other actions:

TEST "SCORE" 8;

MATCH ;

WRITE YOU ARE DOING VERY WELL. YOUR CURRENT
SCORE IS "SCORE".;

. PR
-67- ...

The program is not limited to doing only one thing per test or

match:

SCAN HELEN OF TROY;

MATCH:
SET IISCOREH . "SCORE" + 1;
SET ""TROJAN" = "ANSWER";

We can now close off this little routine and then do something
about the failures. An END statement - again consisting solely

of the opcode - is used:
END; (or E;)

This can be followed by an action which will always take place if
there has been no match, in effect saying to the computer, "If the
current condition code is not positive, let the following operation
take place:;"

COUNTERS MATCH or FAIL statement will operate during

FAIL;,

WRITE NO. IT WAS HELEN OF TROY;

SET "SCORE" = "SCORE" - 1;

JUMP (to some other label address); :

END ; :
MATCH AND FAIL One can limit the number of times a given ;

processing of the section of code wherein
it is located, by adding a blank, followed by a limiting numeric
expression, to the MATCH or FAIL opcode. Actually, this limiting
value is part of the operand of the MATCH or FAIL =tatement.
MATCH 1; or M 1; will b= processed no more then .
mmce, ‘tk=n sumrr=ssed, along J

with all statem=mts that depemd
oan it.

FAIL 2; or F 2; ¥ill be processed no more than
' ‘twice, then s=ppressed, along
ith all the statements that
d=pend ©wn it.

The way in which this feature may be explo-<ed wFll be demon-~

strated a”ter we have considered the decision procsss. For

direct reference, see page 82 .

Rhare< T |

JUMP or J JUMP 1s fairly self-evident. A JUMP state-
ment transfers control unconditionally to
the opcode associated with a label that has

teen specified in the operand of the JUMP statement. Thus JUMP RUNCIBLE;

will cause processing to switch to that part of the program where a state-
ment labelled RUNCIBIE is to be found, and to resume sequential process-
ing at that point. Note that the destination-label is'ggg in quotes.
(ONLY the labels of variables should be in double quotes when they are
referred to in the operand of a statement.)

The JUMP statement itself may, of course, be labelled, e.g.,
SPOON: JUMP RUNCIBLE; (If at the destination we were to find
RUNCIBILE: JUMP SPOON;, an infinite loop would result. DISCUS
squelches infinite loops after a large fixed number of cycles.)

JUMP is arbitrarily suppressed when it would, if executed, vio-
late condition code levels in a block structure. This will be explained

after we consider the decision process.

RECAPITULATION Thus far we have discussed a number of
OPCODES and the statements which they

govern:

WRITE or W (p.22)

WRITE(NF) or W(NF) (p.30)

WRITE(ND) or W(ND) (p. 31)
ANSWER or A (p. 34)
ANSWER (NF) or A(NF) (p.39) :
SCAN or s (p. ko)

DEFINE(A) or D(A) (p. 56)

DEFINE(C) or D(C) (p.56)

SET or S (p.57)

TEST or T (p.67)
JUMP or J (above) ﬁ

It has been stated that SCAN ané TEST goverm the decision process,
and in demonstrating this we hzve briefly touched upon four addi-
tional OPCODES:

MATCH or M (p-68)
FAIL or F ‘ (p.68)
END or E (p.68)

The intricacies of MATCH, FATL, and END can be properly
understood only after a general discussion of the "block structure,"

which folliows.

. a

THE BLOCK In order to appreciate what a block
STRUCTURE structure in CAI can do for us, it is
necessary to review the factors which
have led to its development.
CAT programs and the "language" systems in which they are

implemented can be described generally along the following lines:

Step 1 A chunk of instructional text is displayed.
Step 2 A question is displayed

Step 3 The student answers the question

Step 4 The answer is checked against pre-specified

strings in order to determine
a., if it is "correct"
b. if it is "incorrect"
¢. if it cannot be recognized as either
Step 5 Program reactions unique to 4a, 4b, and lbc are
arranged for each case, such as
the display of text which purports to
comment on the answer
the display of text which suggests or
states the answer sought
the incrementing of a score variable
Jumping to the next chunk of instructional
text
Jumping to anothe: part of the v gram.

The ease with whicli a CAI mechanism can be described along
these lines can lead to its being oversold om precisely those
points where it is often weskest: perceptiveness (Step 4) and
versatility (Step S5.) Efforts to make CAI programming as simple
&3 possible can lead to routines that work in only one way, where-
as the intellectual aspects of a unit of dialogue may call for
elaborate options....at least if the idea of dialogue is to be
sustained at all. Otherwise it is a little like trying to paint
a picture without being aliowed to mix the colors.

The situation is typified in conmection with the program re-
actions listed in Step 5, above. A very simple CAI language is
limited to working in one or the other of two basic condition-code
settings, and is governed through a whole series of operations in
a given frame by that one setting. Such frames tend to be sequence-
bound, that is, reactions to matches must - both in the source
coding and in the object module — precede the reactions to non-

matches, There are usually ways to program around these constraints,

1075

but tlhis sort of effort is not a happy investment.

DISCUS reduces opcodes to their simplest terms, each designed
to do one thing and to do that one thing invariably - regardless
of condition code setting. Then it provides two special opcodes
whose sole task is o act as gates - one of them opening only
if the condition code which governs it has been set to indicate
a "success," the other only if the condition code which governs
it has been set to indicate "failure." These are the MATCH and
FAIL opcodes.¥

Instead of a command meaning "WRITE IF A MATCH HAS BEEN MAD "
we use the command WRITE or W, meaning "WRITE IF YOU GET A CHANCE",
and ahead of it place a MATCH statement which will bar execution of
the WRITE unless the condition code setting at the moment indicates
"success." ¥

In the same way, instead of a command saying "WRITE THIS IF NO
MATCH HAS BEEN MADE," we again use WRITE, but precede it with a FAIL
statement to ~event ex.cution if the condition code is set to other
+han "fail."

This may be done across a range of elements, each of which is

to be checked. Or it may be done on a contingent basis, i.e.,

Block Zlevel

of nesting
1 Check for A
2 If A is true., z==eck for B, otherwise pass to point Z
3 ” B k4 n ot n C . 1 1" " " Y
h 1" C n " A " D . " " " 1" X
5 " D 1" " " " E . " n " " W
6 " E 72 1t " 1" F . " " L1 " V
"{ 1" F r ” m " G, " 1" " " E
8 n G " " kAl 1" H, 1" 1" 1" " T
9 " H " " " ” I . " " 1" " S
lo " I 1" 1 \x] " J , A " 1" " B
ll " J 1" 13} has " K, 1" ” " " Q
12 n K 1" t 1" " L’ " 1" \1 " F
13 " L " T " " M’ " " 1" " O .

(to maximum
dept of 255)

*Professional prograxmers may object to the terminology, but far
purposes of this Manual we eguate the words "success" = MATCH =
"positive" ; "failure" = FAIL = "negative".

A condition code could be represented with a small square of
cardboard to which a swinging arrow had been attached in such a
way that it would point to either one of two possible conditions,

success or failure:

Success Failure Success Failure

or

Now let us require the computer to remember how the arrow pointed
a moment ago, even though the current setting may have changed.
This is certainly storable information, and we want to be able to
retrieve it in reverse sequence. It is as if we were to stuff a
whole series of remembered settings into a tube, and retrieve them

according to the order in which they were stored away:

The setting The last pre- The first pre-
of the moment vious setting vious setting

{ C

A ,

(2 T 3 V + T 5 ! & T

Along with each setting, its storage sequence number is noted.
This number indicates the level or that particular setting. By
letting the level determine whether or not a MATCH or FAIL will
even be considered, a vastly expanded set of options is made
available. This is the idea of block structure., It gives
DISCUS a 2-dimensional aspect rather than one which is simply
linear,

Every test carried out, whether it be dictated by a SCAN
opcode or a TEST opcode, results in a condition-code setting.

Action which follows (e.g., WRITE, SET, JUMP, etc.) may take place

Lape e
€\

72—

immediately, or it may be deferred until after one or more addi-
tional tests in the nest are performed, but in any case it can
take place only at the prescribed level preserved by the MATCH
(or FAIL) which sanctioned it.

How does one emerge from a deep level of operation? Simply
through use of the END (or E) opcode. We pull the remembered
settings out of the tube, as it were, and throw them away one by
one, with an END statément for each preceding MATCH or FAIL state-
ment in the nest. Sooner or later, back at Level 1, the total
number of END statements in the text must equal the sum of MATCH
and FAIL statements.

The following is an executable sequence ¥

SCAN; :}
MATCH ; Level 1
TEST;
- TEST;
MATCH .} Level 3
SET;
SCAN; Level L
MATCH;
WRITE; Level 5
END; Level &
END; Level 3
END; Level 2
END; Level 1
Total MATCH + FAIL = L
Total END =)4

*¥As a convention for listing blocked coding, we sometimes use
indentations resembling those employed in FOIL. It should be
emphasized that they have no operative significance in DISCUS coding,
however, but are intended only to help the reader visualize the block
structure.

Q A '?%3 e,
=73~

It is possible to jump out of a series of nested blocks at

any point.

SCAIT;
MATCH; ;} Level 1
SET;
SCAN; Level 2
MATCH;
TEST;
MATCH;}' Level 3
JUMP (to some labelled location); Level 4
END; Level 3
END;

JUMP (to some other labelled location);} Level 2
END; Level 1

The fact that execution in some cases never reaches the END state-
ments at the far side of the block structure does not change the
coding requirement: +the END statements must always be there, and
they must always equal in number the total number of MATCHes and

FAILs used in the block. Thus in

MATCH;
JUMP (to label address specified in operand);
END

the END is indispensable.
While there is no restriction against jumping out of a nested
block to a location encoded in such a way that it would be at a
different level, care must be teken that the net effect is not to :
try to reach a level of less than 1. The total number of END state- 5
ments encountered must not exceed the sum of the number of MATCH ‘
and FAIL statements passed-through, since going below level 1. _
The current state of the condition code, as to whether it is i
set at success or failure, controls entry into a MATCH or FAIL :
block - either within the same nest or in another nest which has
been JUMPed-to. When a block is successfully entered, the condi-

tion code that enabled the entry is preserved and a new level of

9. ;
—Th-

condition code is brought into use. If no new TEST or SCAN is
executed on this new level, the condition code as previously set
is used. The next END statement in sequence brings the condition

code to the next higher level in use, after saving the current

code.
Example: (explanation below)

W NAME THE THREE GRACES.;
SC AGLAIA;

W AGLATA WAS FOUND;
sC THALTA;

M;
W THALIA WAS FOUND.;
SC EUPHROSYNE;
M3
W EUPHROSYNE WAS FOUND. ;
J XX;
E;
E;

B®EEEEEOEOROELE

W WE ARE NOT SURE ABOUT EUPHROSYNE, BUT THALIA IS
DEFINITELY MISSING. ;

@6 xx: E;

Explanation (Assume student answers "Aglaia, Clio, and Minerva.')
Statement <:> looks for AGLAIA in the answer field, and since
AGIATA is found, the MATCH block starting at statement <:> is
zntered and the message at statement (:) is written on the
screen. Since the scan for THALIA fails, the MATCH block
starting at statement <:> is not entered, and execution corn-
tinues at statement <:> , o N ich corresponds to the
termination of the MATCH block .ts ing =zt <:> » The sentence
in the operand field of statement <:) is then displayed.

Thus each MATCH or FAIL block is terminated with a corres-
ponding END, and, if the block is not entered, all the contents
of that block are skipped and execution proceeds to the corres-

onding END, N
poncing 80"

75

O

ERIC

Aruitoxt provided by Eic:

When a block is not entered because of condition codes not
being favorable, all the nested statéments within the by-passed
block are ignored. Thus if a block on level 5 1s encountered, but
not entered because the condition code setting of the moment is
failure while entry is contingent on match, or vice versa, and that
block contains nested blocks at levels 6, T, and 8, execution
crosses over to level 5 beyond them, i.e., to the corresponding END

statement.

2

-76-

BLOCK or B There is one more OPCODE to be mentioned
in connection with the DISCUS block struc-
ture, one of falrly recent development.

The necessity for this new opcode - BLOCK - became ewident only

after finding that we needed a simple way of setting nested blocks

apart as subroutines without too much concern as *o where tkey
occurred in the execution stream.

BLOCK simply stands in place of either MATCH or FAIL opcciss
when the current condition code setting is immazeri: :and ali tkat

is desired is to bracket a section of code. (Az- =xsmplie is -~ ven

on page 78.)

The rule about END statements can now be rsstate. . THE 3UM
OF ALL END STATEMENTS IN A BLOCK MUST EQUAL THE I ™M <~ ./LL MATCE,

FAIL, AND BLOCK STATEMENTS.

USE or U A USE statement causes on= - - more logical
instructions located elsesihere in The pro-
gram to be executed as Z7 they were actu-

ally listed at the location of the USE. The operaund of a USE

statement is always the single statement label afdress indicating the

location of the instruction(s) to be executed. The label is not 5

enclosed in quotes.

The scope'of the USE depends on the nature cf the statem=nt
bearing the access label specified in the USE opers=md:
a. If it is a FRAME statement (e.g., AAA:FREMIT: or AAA:FR;)*
" then the entire frame is executed.

b. If it is a MATCH, FAIL, or BILOCK statemer—., then all
commends at or below the entry point level -will be
executed, until the end of the block is =—eached.

¢. All other statements are executed as individual entities.

As a corollary, execution returns to the point immeciately =Tter the

USE statement when execution

*Discussed in next section.

82

a. The next FRAME statement, if a FRAME has been USEL

b. The first END statement encountered at the level ==
which the block was entered.

c. At the delimiter (3;) of any other statement USFD other thar
FRAME, MATCH, FATL o> BLOCK.
There will be mumerous instances wherein the coder wilX - zmt
o use USE for bookkeeping operations. These are discussed i- —The
ce2ection on useful subrcwiiizes in Part III.

The userulness of JSE can be exemplified briefly as fol. i

z. Suppose the programmer has writter a particular rov e

o Zrviting signoff, such as ""You have been working for ot as
n- <. znd your scoring rave is . Do you want to stop for aw. il= "
He . zht w=nt to be 2ble to call up this routine gt several &EFjerer
po—nts in the program, ==d he can do so by delimiting it wizm =

BT} K statement, the first of which he couid label TIRED. He - 1l4:

tiz=n implant the following statement at sewveral points in BI: p- vorme

USE TIRED;

with the same effect as if he had repeated the entire routin= =i.

each location.

b. BSupposc the programmer has written a testing routine +to
determine the "scoring rate" and to govern use of the frame

descrihed above, and for this purpose uses a block such as the

tollowing:
SCORCHK: B,
5] "STALLY" = "TTALLY" / "UTALLY",
T "STALLY > T;
My
U TIRED;
E;
Ej;

b

He needn't repeat -this every time he wants to employ it in the
orogram. USE SCORCHK; will suffice.

c. Buppose the programmer has prepared a lengthy WRITE

statement {such =s a -arsfully formatted iist of categcr-i

O -

ERIC 78

Aruitoxt provided by Eic:

He can eff=ctively insert this single statement anywhere in
his progream simply by referring to its label in the_opérand
of = USE statement; e.g. USE LIST22. UNLESS THE STATEMENT
USED is a MATCH, FAIL, BLOCK, or FRAME statement, processing

reverts irmediately on reaching the first delimiting semicolon

aft=r the location cited in the USE operend.

Exemrles given following explanation of FRAME (next

secton) &emomstrate some additional applications of USE.

FRAME or =& A FRAME statement marks the beginning
of a segment of code._ Also the word
"frame" can mean the entire list of in-
strootions (=catements) beginning with a FRAME statement and
ending == the next FRAME statement. For clarity we will indicate
the word ..n timis second sense by printing it always in lower

case.

FRAME ;

frame
Other k////ﬁ

Statements

FRAME ;

FRAME statements serve as referénce point for éntry or re-—
entry Imnto a particular sequence of code. They do véry littlé
processing. as such, and contain no operand. They may, howevér,
be labell=l and through such a lsbel reached by méans of a JUMP
or USE from some other part of the program. Whén accesséd in this
or any other way they simply pass execution to the néxt statement
im segmence.]

The DISCUS compiler will cause a line of hyphéns to be printed
oat in ¥h- object listing immediately ahead of the FRAME statément.
(See exam; le on page 2k.) This is helpful in scanning and chécking
the program after it has been compiled.

A typical Frame begins with a display of text followed by a

directivs that will elicit a response from the student.

-79-
84

Next follows an ANSWER statement, then ocne or more scanning
and testing operations with their tratn of comtingent actions:
display of additional tewt and commeny, Scoring, tranching

to other routines, retu:ning to the AWNSW - statemexd, ete.

After all the operrz-ions specified - -~ommection with
that particular ANSWEEL statement have b=sr. encoded, and the
coder is ready to gc or. to the next inst -uctional step, he
will probably decide tc start & new iram: (withh a FRAME
statement).

The frame - as a umit of instructior - is = teeching cor—
cept derived from earl=er work in the des._izn of programmed
textbooks and teaching machines. Blocks =xf t==x. with multizile
choices appended, were actuglly enclosed Zm a —=ctangular

" 4n the former. Below this figure apre=ared directions

"frame, '
as to which page to turn to, depending om =—he stzdent's choice
of answer. Teaching machines concealed the cmrrect answers
mechanically until the student pushed a slide wkich carried

his own answer irretrievably into the machine*s insides.

Although computer-assisted imstruction frees us from the
constraints of the programmed texztbook and its mechanical
counterpart, it is only natural that an author/instructor shotild
at first favor frame-like steps in d=veloping his material.
Later, the fact that k= can use piec=s of frames whenever he
wishes, can return to whole families of frames at will, or
Jump from the middle of one frame to the begimming or middle
of another, in due course will persumie him o structure his
material more flexiblmy. After all, the {rame &s such does not
govern the execution of the program: it is ju=st one way of seg-
menting the flow of IZeas.

A frame can be ex>reme=ly short &md =imple, or so long amd
complicated that it Inwwnlves hundreds of statemenits. If a
definition is needed, ame might say that a fr=me is a sequence
of statements that contains one and only one LTNEWER statement.
This takes care of ths kind of frame that makes no didactic

pronocuncement, but simply gives the student a ¢izznce to responc

-80-

85

O

ERIC

Aruitoxt provided by Eic:

to somethbing posed in a r=se’ icn WRITE in =mother frame (or in
sevral orier =rames). 1t & 50 covers the most Intricate
scem and ===t structures ¥ A follow the ANSWER statement
bef re tiz mext ANSWER ste =mment occurs in the coding sequence.

Thi: d=fiznition does mot specify FRAME as a delimiter,
beczuse " ae FEAME STATEMENT IS PRIMARILY A IDCATOR. It has an
importan . fr—rTion in certz.n operations, but its presence or
abs=nce s T directly marTestsei, To explain:

TRALE ez be thonght of =s thie czoncierge of a small hotel,
a hotel viZtx wIide—opem windowss, 811 on the ground flcor. One
car enter T w=y of a window : 2d leave the s:iime way, and the
cancZergs will never be thew ' zer. If, howsew2r, one goes in
by —ne front door, past the zmoierge, th= Zatter unobtrusively
mak=s a note ¢¥ it and immefi=mtely notifi=:s E=zadquarters.

Now let =s =ay that the .rzest disapr:zrs - Tthat is, the
studsnt signs off for the day. The record of his last known
wher=abouts = Z=ept on file, =znd when he sigrs i® again, Head-
guarters will see to it that <hat is where "= -materializes
again.

Vot ©o I=labor the analogy further, let == say that we
use a oiinter system, and every time a FRAME =tatement is
passed thwough, that location is recarded im = molnter and

the reswrd of the previmus zgddress iz erased. The block level

apriying to the current opezsi~on is also rec wrded. Accordingly,

th2 program krnows whers tc Tesume execution zzimer it has been
imterrupted.. =nd ab wi=c conditfon cufie level. This is the
EESTERT "LTGITY mentioned. earlier,

FREWE rfulfills =swmill mmother function in commection with
MATCH =i FiT. r-~ounters. Whenever a TRAME statement is exe-

cute=d, "I 1 M™TH, FAIL and ZLOCK counters zrz set to zero.

86

81—~

W

Now tiiat the reader has beenm introduced to bleock struc-
ture, 2 oz mc—e readily appreciate ths utility of the MATCH
and FATT coznters of which we spoke earlier (page 68). Since
these countw=rs m=lso work with ELOCK statements, we can refer
to them as METCE-FAIL-BLOCK or "MFB" counters.

In the “cl owing example, the statements which are itali-

cized illustreis the operaticm of this device:

RUBENS: W WERT TWO CCLORS COMBINE TO MAKE ORANGE? ;
A
3C #3T % YELLOW;
M3
W CORRECIT
J TTTAW,
E;
SC E=ED;
M Iz

W RED IS CORRECT.; Provided the student doesn't get
both right in the first scan,
processing will test first for "red"
im the =zmswer, and respond with
this, cone time only.

s "TAILY" = "TALLY" + 1;
nO"PATLE" = 2;

M3

w{ND} AND YELLOW =EE..-(etc.);
J TITTAT:;

E;

J REENE:;

E;

My

W YOU ALREADY SAID ’"RED.’'.;The next time around, and
there=fier, if the student answers
"ped " this MATCH block will be
us==% inmstead.

J RUSBENS;
E;
SC YELTOW

{example continued on next page.)

—82-

87

M1;

W YELIOW IS CORRECT.: Will be processed once only.
S "TATLY" = " gl

T "TALLY" = 2;

M;

W(ND) RED AND YEI_OW ARE...({(etc.);

J TITTIAN;

%

3

J RUBENS;

E;

M; This MATCH will operate the second
time, and thereafter, after a
response of "yellow."

W YOU ALREADY SAID '"YELLOW"';

J RUBENS;

E;

F 2; Response for the first two FAIILS

W NO, "ANSWER'" IS INCORRECT. TRY ANOTHER COMBINATION.;
Ej

F 1; Response for the third FAIL.

W SORRY, ST LL WRONG. BOTH HAPPEN TO BE
SO-CALLFD 'T"WARM"' COLORS. TRY ONCE
MORE., ;

J RUBENS:

E; Response for fourth FAIL.

W YOU SHOUID HEVE ANSWERED '"RED AND YELLOW."';
TITEAN: WHAT ARE THE ‘"PRIMARY"' COLORS?;

ete.

The numeric =xpression used as an MFB counter doesn't have

to be & simple integ=r; it can be an expression such as

"N" + L4 - "Y". In such a case the system makes the necessary
retrizvels and/or ccmputations to establish the actual number

of times the M or F or B statement will be allowed to operate.

i A o b o ae it e

i K 2 WS i e 5 e A7k

NOTE or N Oftentimes the programmer will want
to make a permanent or semi-permanent
memorandum of his reasorns for coding
a sequence in a particular way, or to indicate a transition,
or to relate sections of code to topical headings in the author/
instructor's outline. He wants these memoranda to reappear
automatically in the program listing whenever it is recompiled,
without, however, affecting execution in any way.
The NOTE statement does this. It is completely inert as
far as the program is concerned, and its only function is to
vpreserve and reiterate, in the OBJECT listings, whatever the

programmer has placed in its operand.

Statement N STARTING DRILL AND PRACTICE IN PARSING;
Result N STARTING DRILL AND PRACTICE IN PARSING;

is printed in the OBJECT listing, in its
proper location, with a statement number
assigned.

NOTE is seldom labelled, because there is not much point
in accessing a statement that does nothing. Occasionally,
however, there arises a need to assign two labels to a single
statement. Since current implementation does not permit this,
one of the labels can be assigned to a NOTE statement, which
is placed immediately ahead of the statement in question. On
execution, if that label is JUMPed to, processing simply goes

on to the next statement.

Statements

J REVIEW37;

J DICTUM37;

REVIEW3T: N; '
DICTUM3T: W THE FOLLOWING TRENDS IN THE TRANS-
PORTATION INDUSTRY...ete...;

—8L—
05

Result (of either JUMP)

THE FOLLOWING TRENDS IN THE
TRANSPORTATION INDUSTRY...
ete...

NOTE can also be used temporarily to suppress a statement
(together with all statements which depend on it). This is
sometimes desirable when the programmer wishes to enter certain
items in the program but to keep them in abeyance as far as
execution is concerned. He can imbed this material in his
source deck and see it printed out in the OBJECT listing, and
yet be sure it won't be executed, simply by adding NOTE or N
ahead of the statement to be suppressed (but following its
label, if any). This has the effect of turning the opcode of
that statement into operand material, which will be (because of
the N opcode) completely disregarded during execution.

When the programmer is ready to activate the statement in a
subsequent compilation, he simply removes the N opcode.

The device is made the more convenient if statements are
always punched with a few extra columns preceding the (normal)

opcode, in addition to those needed for labels.

Statement (as normally punched)

CATCHZ22T S "BUNNY® = “DUmstYy* +13
N I ..] |
v/\/\/-_)——\\\/\-—

(execution suppressed)

CATCAZ2T N S “BURAY" = ~DOWY- *k)
o I ’ " a

-85~

PART III - PROGRAMMING IN DISCUS

IDENTIFYING THE The functions performed by the several
PROGRAMMER DISCUS statements as described in PART II
need to be thought of as tools by means of

which the craftsman may be able to shape satisfactory computer-assisted
dialogue. Like any pr=cision tools, they need to be used deftly, and
in a number of different combinations, in order to achieve a desired result.

At this point we should pause to consider who will be using these
tools. Will he be a professional programmer, one already trained in
some standard computer language, perhaps several? Will he undertake
DISCUS programming simply as an eXxtension of his repertoire?

Or will he, instead, be a person whose main commitment is to
education or training in an academic, commercial, or industrial
environment? If so, will the production of course materials for
direct implementation be his principal concern, or will he be
oriented more toward research and development in the educational
and training processes themselves?

Will he be a specialist in some subject field, one who works
in an educational enviromment, perhaps, but whose time and energies
are largely preoccupied by the demands of his specialty? Might :
such a person take up CAI programming in order to promulgate his
specialty more effectively?

Might the DISCUS user be one whose interests and duties combine
elements of all the foregoing in a pattern that is unique to him alone? 3

In trying to identify and characterize the CAI programmer in

A S

P S SN S 123

standard terms, we find that no one set of qualities, interests,
and objectives suffices. Between the extremes of the systems
programmer, on the ome hand, and the preoccupied scholar, on the
other, there will be many who will find CAI programming a useful
adjunct to their other talents. In addition there will be some
who will take it up as their exclusive activity. We ekpect that E

the latter will cluster largely in the educational specialist sector,

but this may not always hold true.

91

-87-

It is difficult to conceive of an individual at either extreme
who would be both willing and able to produce, unaided, instruc-—
tional materiel of suitable quality. In "The CAI Author/Instructor”,
Meredith discusses the effect on CAI of the essential dichotomy
between educational substance and educational tools. He postulates
a role for the subject specialist wherein that individual need not
master the technicalities of computer programming. By implication
the CAI "programmer/instructor"” would be the other half of a pair
of specialists sharing a single educational task.

Whether one accepts this approach, or adheres to the belief
that one should merge all functions of the author/instructor and
of the programmer/instructor in a single person, the functions
themselves can be considered separately, and in the following pages
we speak of them in this sense - as functions. We personify them
separately, for the sake of clarity and convenience, but not to
imply that only a team approach will work. The reader can decide
for himself whether he wants to be both members of the team. Mani-
festly this Manual is limited to dealing with the programming
function except insofar as it is necessary to speak of its relation-

ship to the authorship function.

CAI AS A PRODUCT We have spoken of DISCUS statements as
precision tools which the CAI programmer
uses to shape satisfactory computer-

assisted dialog. The product, in his case is nothing as graphic

and self-evident as a watch or a painting or even a piece of music.

The programmer deals with ideas and processes in a heuristic way;

the results are not immediately evident. His product is only a

plan of idea-transitions; it is protean and probablistic, a plan

of happenings many of which may never happen.

SATISFACTORY COM-— What is meant by "satisfactory computer-
PUTER ASSISTED . . .
DIALOG assisted dialog?" Satisfactory to whom?

In a CAT context, we feel that both
the student and the author/instructor need to feel that they are

=88

well served by the computer as a means of communication between
them, bearing in mind that disjunctures of time and place might
otherwise prevent communication altogether. The author/instructor
needs to be reassured that his statements will not - in the con-
volutions of the dialog ~ somehow be turned topsy-turvy. The
student needs to be able to convince himself that somewhere a
human, however remote, is attempting to reach him as an individual.
Both need to be willing to forego the exquisite éontrols and bal-
ances which govern the flow of live conversation, and which on
reflection they would be unwilling to endow a machine with in

any case.

Computer-assisted dialog is "directed dialog," with almost
all of the direction in the hands of the author/instructor and the
programer/instructor. This in itself is not a bad thing: students
are used to being lectured at, not with, and even seminars have a
topic of some kind, and a leader. In highly interactive CAI the
sharing of some measure of direction is entirely feasible, and
eventually - as programs increase in number, versatility, and
general avallability, perhaps to the extent of coalescing into
huge learning complexes - much of the supervision of directed dialog

will pass to the person seated at the student console.

PROGRAMMING AS We have purposely omitted the program-
AN EXERCISE IN

ANONYMITY ming function from the above cri-

terion of satisfactory computer-

assisted dialog, because the programming function facilitates,
rather than judges, the final result. He is a communicator, rather
than a communicant. He has the responsibility of determining how
well the author/instructor and the student are served, according
to the system's capabilities as he sees them. He decides not only
whether a certain thing can be done, but also whether it will be
useful enough to either of his patrons to make it worth doing.

There 1s, after all, a limit to available programming effort.
The time spent in making one frame super-elegant may lead to the
slighting of others, to the detriment of the sequence as a whole,

On the other hand, it mgy lead to the discovery of contrivances

g

which will be useful in a number of frames. Accordingly, when a
programmer devotes many hours to a particular subroutine for a
particular frame, he has, or should have, some.expectation of
being able to use it in other frames as well, with adjustments
that will be minor and preferably automatic.

As far as the author/instructor is concerned, the programmer
speaks for the system hardware, offering a mixed collection of
services. These are usually far greater in scope than the
author/instructor who is new to the field will have envisaged or
will be prepared to utilize. It is essential that they not be
dragged in just for the sake of using them as toys. On the other
hand, the author/instructor should be reminded from time to time
that they are there.

As far as the student is concerned, system mechanisms should
be as unobtrusive as possible, in order to permit the level of
communication we seek. Whatever the system conveys to him is
conveyed on behalf of the author/instructor. The programmer,
as part of the system, keeps well out of sight. He avoids imposing
more than an absolute minimum of housekeeping chores on the student.
He busies himself between the two principals, a collaborator of
the one and aﬁ observer of the other. He is there, but like the
ne'er—do-well father who shows up unexpectedly at his son!s fine

wedding, he shouldn't rush in and shake hands all around.

PREPARATIONS A level of mutual understanding should
Join the author/instructor and the pro-
grammer/instructor, so that the formér

will have a good grasp of system capabilities and the latter

will have a good grasp of the subject to be taught. Before the

actusl writing of a program is begun, a nunber of parameters

need to be specified, or at least described closely enough so that

collsborators will not find themselves drifting apart later on.

It is best that this be done in writing. No informal under-
standing, however agreeable to both parties, can properly sub-

stitute for written instructions. Even if both functions are undertaken

by & single individual, he should carefully profile his intended
student set, course objectives, subject matter, and strategy - in
advance and in writing. The following checklist may be useful in

this connection:

Define the course objectives.
What is expected to be the students' median age?
n n n” n 1 n n acade’nic ZeveZ?

noon " moonon r” preparation
and/or screening?

How is the subjecet matter conventionally organized
and presented?

What are its boundaries?

What 18 the nature of adjacent subject matter, and
how permeable are the inter-subject boundaries?

The general plan of organization. Will the
instruction be sandwiched between lectures or labs?

What will be the policy on the handling of requests
for review. Should review consist of iteration, re-
statement, compression, or a combination of all three?

What will be the policy on the handling of requests
beyond the scope or depth of the "involuntary stream.”
If voluntary digressions are permitted, where and how
are they to be brought back to the mainstream?

What will be the policy governing sequencing of topics
or the resumption of topics on "restart" (i.e., when
the student signa back onto the terminal after an
interruption)?

What elements are to be the subject of scoring?
What statistical data need to be accumulated?

CORPUS" Next, the author/instructor should
furnish the programmer/instructor
{(or the author/insfructor/programmer
should furnish himself) with a body of substantive instructional
raterial (corpus) which -~ if not covering the entire course - will

at least be complete and well polished as far as it goes:

35

~91~

A list of textual statements to be used.

A list of questions or requirements de-
signed to elicit responses from the student.

A list of anticipated responses according
to key words (e.g., a typical response
with key word(s) underlined.)

A list of econditional rejoinders (not
necessarily complete, because not all
reasonable responses can be imagined by
the person who generates the text; the
programmer himself should be able to
suggest additional possibilities.)

This is the heart of the dialog. Its preparation is scmewhat more
demar:ding than would be the writing of an effective, publishable
textbook. It shculd be as explicit as possible before the pro-
grammer picks up his tools. There will be revisions, of course,
after the author/instructor develops an ear for computer-assisted
dialog. Hopefully some of the initial frames can be implemented
in the system for Just this purpose. But without written bases as
points of departure for such revisions, the programmer will find

himself floundering in a morass of "Who said what? Where am I?"

In order for the system to serve both educator and student
satisfactorily, certain favorable conditions must be established
at the terminal:

The student needs to learn to use the equipment as quickly
and with as little fuss as possible. After being told how to
sign on and off and how to send his responées to the computer, he
should - insofar as possible - Be freed of the mechanical imper-
atives which tend to intrude between him and the course material.

There appear to be two levels of instruction involved here:
instruction on how to use the terminal, as above, and instruction
on how to formulate input. An example of the former would be the
imparting of the method of backspacing over mistakes, something

the student should be told by pre-instruction. The latter

rspresents some inherent constraint or srtificiality in the pro-
gram itself, such as might prevent inpuf from being "underswood.”

To illustrazte this, surDose we had the following JIisplay:

THE "STATUTE OF FRAUDS" IS PRIMARILY CONCZRNED WITH
1. TRANSACTIONS IN JEWELRY
2. STOCK AND BOND SALES
3. REAL ESTATE TRANSFERS AKD LEXSES
L. THE 'USED CAR RACKET'

Suppose that for some reason the system or the CAI language in
use, or both, imposed one or more of the following rules:
ANSWER ONLY WITH NUMERAILS
ANSWER ONLY WITH NUMERALS OR A SINGLE KEYWORD
ANSWER WITHOUT ANY SPELLING ERRORS
ANSWER WITHOUT REVISING SYNTAX IN ANY WAY
DON'T SUBSTITUTE 'THE FIRST' or 'ONE' for '1', etc.
DON'T USE DOUBLE BLANKS
DON'T ANSWER WITH MORE THAN ONE OF THE CHOICES
DON'T USE MORE THAN 8 CHARACTERS IN YOUR ANSWER
DON'T COMPLAIN OR ASK QUESTIONS
DON'T ., . .etc.

How much of this sort of thing should be inflicted on the
student before he has a chance to answer the gquestion? The best
solution is to eliminate the constraint, but there will be times
when the programmér will feel that the likelihood of deviant
response in a particular frame is so slim that it is not worth the
labor of accommodating it. It appears to us that this sort of de-
cision should be reflected in post-instruction. There is no point
in telling the student ANSWER WITH NUMERALS ONLY if that is what
he was going to do anyway. The system intrudes much less if it
corrects and instructs only when an item of student input shows

that ecoryeciion and instruction is necessary.

97

-93-

i dem g © 4 e REren s e

e v s ot

oA S KR PN A

The hoice between pre-:nstrucfion and poét—instruction de-
pends on the =xigencies 7 each particular freme. but the norms influ-
encing T .aess choices she - ! be agreed in advance batween the author/
instzuc=or ==i the prograrmer. If the latter works in a CAI
languzge as =:gile as DISCi-', the policy can in fact be one which
abjures pre-instruction altogesther, or almost altogether. One can,
in other words, sliminate from the phrase "directed dialogue”
th= conriotaticn of directiiag the form in which the student answers

must be couched =In order to be processed by the system.

The presentation of instructicnal material in ways that per-
mit the student to take an active part in his own learning pro-
cess is an axrt in itself. It is not enough to pause every few
sentences to ask a question merely to find out if the student has
read and understood what he has been toldj; the student should be
enabled to extend or exemplify the concept in some small way.
This means s=retching the system to the limit in order to cope
with a very broad range oI responses. When the types of response
elicited by the aufhor/instrucfor threaten to exceed this limit,
e.g., when the proportion =f unanticipated, or fail-match respon-
ses would be excessively i>gh, he should be so advised.

It is useful to categorize possible student answers along
the following lines as a basis for assessing the performance of

a given set of SCAN specifications:

A (Answer, Legal) A string of student input
of limited length, con-
taining at least one term
relevant to the gquestion
or its context, and in
grammatical order.

Ag (Answer, Illegal) Any string of student
input not meeting the
above requirement.

Ap (Answer, Legal, Perceived Any A_ which is pre-
dicte& as possible input.

ALEM (Answ=r, Legal, Parceived, Any ALP which the author/

Matcied) instructor chooses to desl
with specifically.
ALPF (Answer, Legal, Perceived, Any ALP which the author
Failed)

deems so remote or so
inconsequential or so
gifficult to deal with
mniquely that it showld
be failed.

ALU (Answer, Legal, Unperceived) Any AL not perceived as
a possibility.

F (The sum of failed Answers) AI + ALU + ALPF

The type of answer which principally occupies our attention
is ALPM' It is not necessary that the author or programmer
have in mind everything that the student might say embodying the
ALPM element(s); it is necessary that he select some elements

which are

likely to match with a broad range of responses relevant

to a question,
will match members of semantically similar input, and
will distinguish semantically dissimilar input by failing

to match with it.

The range of ALPM is directly influenced by the form of the

questions which precede them. A question posing a’'very rigid

requirement (e.g., True-False) reduces the number of Al py to a

i
1

minimum, but at the same time: it vitiates the conversationsl mode.
The gocal should De to opesr == guestions and to give the student as
much freedom in formulatimz kis responses as we can, without
letting match probabilit; fz11 below acceptable levels.

Part of the =muthor/inscructor's task-is to define, or at

least coherently To d=scrizz. the A which he wishes to inter-

cept. The SCANs that are tOAaccomgiish this call for close
collzbecrative effort on the part of both the author/instructor

and the programmer, the former contributing most (but not all) of
the lexical strategy, and the latter contributing most (but not all)
of the mechanical tactic,

In the selection of a single keyword to be specified in a
SCAN statement, we maiturally want to choose one which will, if
present, almost certainly indicate that the student has expressed
a particular meaning To which we can respond unequivocally. If
there appears to be excessive risk in relying on a single keyword,
i.e., if the word might reasonably be used by the student in a way
different from that to which we want to respond, we try to restrict
it somehow by combining it with one or more additional words.

While this increases the confidence level in respect to the pro-
gram's understanding of that which it intercepts, it decreases the
versatility of that one SCAN parameter insofar as intercepting var-
iant expressions of the same meaning is concerned.

This effect approaches the absolute when one specifies the
key-string as a literal, ruling out "match'" if the student inserts
or omits anything at all (even an extra blank or two) between the
specified elements. Thus

SC 'RED, WHITE, AND BLUE';
would not intercept

red, white, pink and blue

or -

red, white, blue

or even

red, white and blue

Such rigidity may be exactly what is wanted sometimes, of

course, but more commonly literals are used to specify parts of

400

keywords rather than longer strings, their fugctién being to
afford some latitude in spelling, syntax, etc. Thus
sc ' STOR',

accepts storage, storing, stores, storable, store, etc. (and

stork, stormy, Storting too, but these are remote enough to be
acceptable risks.)

Literals aside, it might be said that for each word specified
in conjunction with a keyword, the likelihood of misinterpretation
decreases very rapidly, whereas the likelihood of missing identical
or nearly identical meanings increases by a similar factor. But
this should not be construed other than as a gross representation of
a whole series of effects and counter-effects tied to the probabilities
of the English language. Input varies in length, and one might ask
to what extent a long input string would be more likely to contain
a given key-string than a short one. Perhaps none at all,

Not all associative words used with keywords carry the same
discriminatory power. In fact, one finds that sometimes the words
which are the most obviously associative carry no more certitude of
correct interpretation when combined with the keyword than do those
which (syntactically, at least) appear to be more remote yet which
encompass a better range of variance. Thus it is possible to expand
the key-string with elements which will greatly strengthen it,
without entailing loss of versatility in anything like the same ratio.

Fortunately, one need not rely on a single keyword of key-
string to intercept a single meaning: the use of "or-connected"
suboperands in the SCAN statement permits a diverse approach, with
each suboperand attacking the problem from a different angle,
(Presumably the program reaction to any one of a group of "or"-ed
suboperands in a ‘single statement is intended to be the same.
Otherwise, they should be set up in separate SCAN statements and
dealt with uniquely.)

The "and'"-connected suboperand is really not much different
from the multiple-word, or key-string, operand discussed above,
the only difference being that its elements will match input of
the same =lements in any order. Where

SCAN RED WHITE BLUE;

104

A et S A A e A 41 = 1

will match input containing those three words in that order

(e.g., roses are red, snow is white, and violets are blue) it

will not matech input containing them in any other order (e.g.,

T have a blue hat with red and white streamers.) But

SCAN RED & WHITE & BLUE; will.

"And"ed suboperands are more rigid than single keywords, but
obviously less rigid than ordered keystrings, because they do
permit inversions and permutations. Since content rather than form
is usually the chief desideratum, this kind of SCAN becomes quite
useful, even if at the time it is chosen neither the author nor the
programmer have in mind all the forms it might intercept.

Another feature of the "and"ed suboperand is that it allows one
to negate any parameter without negating the whole, as happens

in a simple key-string if one assigned — to any of its parts.

Statement SCAN — OSCAR STRAUSS; or SCAN OSCAR — STRAUSS

Result The "not"-sign negates both Oscar and Strauss.

If we merely wanted to intercept any Strauss other than Oscar, we
would specify

SCAN — OSCAR & STRAUSS; or

SCAN STRAUSS & — OSCAR;

"And"ed and "or''ed suboperands let us specify SCAN parameters
with great precision without forfeiting the degree of open-ness,
or flexibility, which we require in a given situation. Coupled
with the "not" facility (—) and the use of stepped or conditional
SCANS we find that we can interpret student input very accurately
indeed.

In the absence of a "not" facility one can accomplish some
of the same effects by erecting screens which scan for unwanted
elements first, before scanning for wanted elements. Using the
OSCAR STRAUSS exemple, above, one would scan separately for
OSCAR, ahead of the STRAUSS scan, and if the former is found, Jump

over the latter.

-98-

102

SC OSCAR;
J WALTZ;
SC STRAUSS;

W YES.;
Jd NEXTFR;

WALTZ: SC STRAUSS;

W NO, NOT OSCAR STRAUSS. ;
J NEXTFR.

There are two ways in which DISCUS permits us to improve on
this, (:) one using the "not" facility (for the case where we
don't want to make & point of telling the student that Oscar is
wrong), the other using stepped SCANS:

@ SC= OSCAR & STRAUSS;
M;

W YES,;

J NEXTFR;

E-

9

®

SC STRAUSS;

1

- (dizgrammed as:)

3

SC 0SCAR; sc M F
M;

W NO, NOT OSCAR. ;

J NEXTFR, scC M_ _(F) _E W J
E;

W YES;

J NEXTFR, L J

E;

B represents an extremely effective way of dealing with
faulty answers, because it can cover errors of omission as well as
errors of commission, simply by using a FAIL block instead of a
MATCH block. Suppose we wanted OSCAR STRAUSS:

ERIC | 103

L A Bt A B A AR ¢ e bl T o 12

SC STRAUSS sc M _____F)_____ E

SC OSCAR C F (M) EWJ

YOU DIDN'T SPECIFY OSCAR
STRAUSS.
NEXTFR

CORRECT': ' OSCAR STRAUSS.
NEXTFR

Block structure moreover permits one to scan for the same
word more than once in the same frame without the constraint
that the first such SCAN is the only one that will succeed.

As indicated earlier, TEST and SCAN are much alike. Both
govern decisions 1n block structures, but whereas TEST may be
satisfied according to its terms by a logical relationship
(>, =, =, or <) of the whole variable tested, SCAN requires
egquality, but only in the part specified. Also while the con-
tents of any vafiable may be TESTed, only the contents of the
ANSWER variable may be SCANned.

TEST is relied on for most of the housekeeping chores involved
in careful CAI programming. Often such functions can be standard-
igei and tucked away in subroutines, callable by the USE command
wherever a particular service is regulred. For example, suppose
the author/instructor wanted to invoke review sequences when "X"
reached 10 or "Y" reached T or the two together amounted to over
13; both "X" and "Y" to be incremented whenever the student made
certain types of errors. The subroutine to accomplish this should
be USEd at the beginning of each frame, which is the logical
breakawsy point for any review. (Note that we use a block struc-

ture to USE several statements together.)%

¥Assume "X", "Y", and "Z" have been defined as arithmetic
variables, and REVY 1s the label of a review seguence.

-100-
i{} 4 e

FR;
U REVIEWA;
W (ongoing text);

REVIEWA: B;
T "X" > = 103
M;
U NOTIFY;
J REVY;
E;
T "Y" > =71,
M3
U NOTIFY;
J REVY;
E;
s "z" = "X" + "y";
T "z" > = 13;
M;
U NOTIFY;
J REVY;
E;

NOTIFY: W I THINK A SHORT REVIEW WOULD
BE GOOD AT THIS POINT.;

E;
(Observe that the statement labelled NOTIFY never executes sequen-
tially, because it follows a JUMP at the same level. An alternate
treatment would be to substitute it for one of the U NOTIFY

statements.)

1050}.; iy

oL
IR

e e e A AR S 5 4

Suppose the author wanted to prevent repeating exactly the
same review sequence (REVY, in the example) in the case of a
student who continues to have difficulty. One solution would be
to furnish a control along the following lines: {Added state-~

ments are indicated by arrows).*

REVIEWB: B;
T "X"> = 10;

M;
U NOTIFY;
T "REVYX" = 1;
M3
J REVY2;
E3
S "REVYX'= 1;
J REVY;
E;
T "X"> =T;
M;
U NOTIFY;
T "REVYX" = 1;
M;
J REVY2;
E;
S "REVYX" = 1;
J REVY;
E;

S HZ" - Hxﬂ + "Y";
T HZH > P 13;

M
U NOTIFY;
T "REVYX" = 1;
M;

* Assume "X", "Y", and "Z" and "REVYX" have been defined as
arithmetic variables.

(REVY and REVY2 are labels of the two review sequences.)

CRIC ~102-,
"106

R e e wiene b ot + D A e e nE e e e e R S AL AL SR S el s s e o7 BB et T e 2

A i 2

IR S

NOTIFY:

E;
E;

J REVY2;

E;

S "REVYX" = 1;
J REVY;
W I THINK A SHORT REVIEW WOULD

BE GOOD AT THIS POINT.;

it should immediately be apparent that the added statements

comprise three identical groups, which might be written as a

separate subroutine (or 'sub~subroutine' if you like) and USE4

when needed:

REVYZ:

B

T "REVYX" = 1;
M;
J REVY2;,

.
g

S "REVYX" = 1;

FR;
U REVIEWA;
W (ongoing text);

REVIEWA:

B

>

T "X>= 10;

M3
U NOTIFY;
U REVYZ;
J REVY;
E;
T "Y'= 7;
M;
U NOTIFY:
U REVYZ;
Jd REVY;

- Foy

USEable subroutine
block

E;
s "gz" = "x" + "y"
T "g"> = 13;
M;
U NOTIFY;
U REVYZ,
Jd REVY;

NOTIFY: W I THINK A SHORT REVIEW WOULD BE
GOOD AT THIS POINT,;

T o100k~

188

The block of seven statements can be stored away anywhere
in the program where it will be protected against accidental exe-
cution, e.g., after a JUMP, Another appropriate location is any
one of the points at which the coder wants to provide for its
use, where it will naturally take the place of the USE command,
at the same time it continues to be USEable from other points
in the program.

In the above, we have reduced the fifteen statements required
in the original augmentation (page 91) to ten, and have provided
a subroutine module that will possibly be useful in some other
context, because REVYZ is not bound to REVIEWA even though we
happened to write it as part of that subroutine. It can be
brought in at any level above the very lowest (250) and function
gquite properly.

It is axiomatic in programming that one should avoid repeti-
tive code whenever possible, i.e., when a subroutine can be devised
that will always and invariably achieve a certain effect when
called upon, By being alert to the use of subroutines, the
programmer sSaves himself considerable drudgery, besides reducing
the chance of random error (in coding and keypunching) to which
repetitive coding is susceptible. His program will compile faster
and occupy less storage space. Execution time will be increased,
but this is usually a minor point.

To return to the problem for which the REVIEWA* subroutine
was suggested as one solution, namely the situation wherein
the author wants to invoke review sequences whenever the wvalues
in certain variables reach prescribed levels:

A zecond method would be to put TESTs at the head of each
set of review frames, and poll them in a series of JUMPs. The
difficulty is that it would be impossible for execution to return
to the point whence it was diverted, since JUMP is an uncondi-
tional command. ©Only USE provides return to the point of ori-
gin on completion of the frame, block, or statement that is USEA4.

Third, it is possible to nest whole series of frames in

blocks, entry to which depends on the results of TESTs and SCANs,

*®
These labels are all arbitrary and have no special meaning in

DISCUs.

209

U

i

and this might be a good way to set aside complicated review or
enrichment routines whose execution would automatically adjust to
combinations of values in a set of variables. An exémple of this
kind of development is not attempted here, however, because it
would involve excessive supporting detail of no immediate interest.
It may be asked, in connection with the subroutine REVYZ, worked
out on page 103, why we needed a subroutine at all, when by simply
limiting the number of times a MATCH, FAIL, or BLOCK block may be
entered we might prevent the same review seguence (REVY) from being
executed twice. Why not encode REVIEWA as follows?
REVIEWA: B;
T "X" >= 103

M 1;
U NOTIFY,
J REVY,
E;
M3
U NOTIFY;
J REVY2;
E;
T "Y" >= T,
M 1;
U NOTIFY;
J REVY;,
E;
M3
U NOTIFY;
J REVY2;
E;
s "z" = "K' + "Y',
T "z" >= 13;
M 1
U NOTIFY;
J REVY;
NOTIFY: W I THINK A SHORT REVIEW WOULD BE GOOD AT
THIS POINT. ;
E;
E;
-106~

1:0

1l. Immediately following each ANSWER statement, insert
USE UTILITY;

2. In a protected location, establish a block of code beginning
with
UTILITY: B;

and ending with

UTILANS: A,
E;
3. Inside the UTILITY block, a series of subroutines may be
nested as separate modules, to be added to or changed or removed
as the coding progresses and the exact nature of the service re-

quired is more fully perceived by the programmer.

a. To help the student sign off:

B;

SC S5IGN OFF, QUIT, TIRED, 'FINI', 'TERMIN'
SPLIT, GET OUT, 'M THROUGH', 'M THRU', LOG;

W IF YOU WANT TO SIGN OFF NOW, JUST
TYPE '"EXIT"';

J UTILANS;
E;
(1) "EXIT" happens to be the sign-off convention in
use under ILR Berkeley TMS Monitor. At ILR UCIA,
the equivalent term is "END".

b. To display the previous statement (often desirable when

the student has made two or three unsucceuwsful stabs
at a question). An arithmetic variable, previously
established, will have been incremented every time a
FRAME statement is passed through, e.g., SET "FRCOUNT" =
"ERCOUNT" + 1) ‘

B;

SC REPEAT & PREVIOUS, DISPLAY & PREVIOUS,
CHOICES, AGAIN, 'FORG' STATEMENT,
'FORG' LIST, SHOW ME, ME SEE, WANT
SEE; .

~108-
142

There are two errors in this treatment:

One is that it dces not prevent thé student from qualifying for
REVY two times or even three times in & row on the different criteria.
That is, he could have a total Z of 13 and be Jumped to REVY, then a
total X of 10 and be jumped again to REVY, then a total Y of 7 and
again be jumped back to the same old review. There is no vay of
grouping the three independent tests in such a way that a single
limiting MATCH-FAIL-BLOCK-counter will monitor them unless we set up
a fourth block to test a flag dedicated to this one function -
which brings us right back to the REVYZ routine (p. 103).

The other difficulty is that since MFB-counters are reset
every time execution passes through a FRAME statement, the device
would work only in the unlikely event that REVY contained no FRs,
and then only for the duration of the current frame in the main-
stream of the instruction.

We can draw a general conclusion from this, namely that the

MFB-counters are not particularly suited to subroutines intended

+

!

for inter-frame use except for operations»strigtly interna%b

the subroutines themselves.

A characteristic which limits a de
(as above) mey be turned to advantage in’
one might want to reset MFB-counters during %
under certain conditions, without having to 1d
then return. This can be effected by inserting a frame statement
(FR;) - which need not be labelled - at any point where the
MFB-counters are to be reset to zero.

Before the programmer starts writing frames, he will be
well advised to consider the kinds of utility services that should
be available more or less continuously during the running of the
program - services for both the student's and his own benefit.
DISCUS users may be able to adapt to their needs. They should be
thought of as if they were recipes in a coockbook, which anyone

is welcome to try.

&

o

My

S "ANSWER" = "FRCOUNT';

SC 1;

M;

J (label of first frame of main text);
E;

sC 23

J (label of second frame of main text);

E;

diagrammed as follows:

_ If first scan
—_— 5 /unsuccessful . B

oc N

)

ANY

S sc A !

c. To allow student to go back to previous frame: :
B;

8C GO BACK, PREVIOUS, REPEAT, PRECEDING,
REVIEW, LAST;

4]

"BACKUP'" = "FRCOUNT' - 1;
"ANSWER" = "BACKUP'";
WHERE ;

H H d O
s

o 1s®-

d. To allow author/instructor, programmer, editor, or "debugger"

to check the status of variables during processing:

B;
SC EDITOR
M
W EDITOR JTNFORMATION':'/;
W(ND) ¥ =P "5
(Name of variable, not/}j <?Name of same
in quotes variable, in

double quotes)

etc.
E;
E;
e. PROCTOR MODE, to allow programmer, etc., to jump execution

to another part of the program without using DISCUS system

author mode
By
SC GO TO,
M,
SC (label of FRAME statement at desired
destination, not in quotes.);

(same label, not in quotes.);

"o

SORRY, UNABLE TO COMPLY.; *

H =5 o

5

This routine gllows one to access topical subdivisions of
the program according to an outline of the course, keyed with
program labels corresponding to its various rubrics. It is nct
as precise a method of Jjumping around in the program as the //F=t
command affords (see p. 137) but is somewhat more convenient for

the non-programmer.)

¥ This takes care of the unfound label, and of the student who says
"go to hell.")

=110~

114

f. To gather statistical information about student input,

e.g., common spelling errors

B;
SC (word); (or SC (word), (word);
SC (word) & (word);
sC (word) (word); etc.)

M3

S "WORDA'" = "WORDA'" + 1;
E;

sCc {word); (ete.)

Mg

S "WORDB'" = "WORDB" + 13
E;

E;

STARRED VARTABLES An unusual feature of DISCUS is an

operation that can be performed on
& character variable by placing it be-

tween two asterisks in a SCAN operand, thus
sC | "Y' #YVIRIDIUM ¥ 'Y’ :

Instead of the contents of the variable being gcanned, as would

be the case if the gtatement were written in the usual way:

sC "YIRIDIUM" 5
the variable is filled with data from the ANSWER FIELD.

In order for this to happen, a match must occur between

something in the answer field and SCAN elements immediately

preceding and following the starred variable.

1145

-111-

At present only character wvariables may be used.

CAT: D(C) 50;

W (something);

Aj

sc ULV EIENERY

The SCAN, operating on an answer field of 'SLIVERS', for in-
stance, would obtain a match, and would most assuredly put
LIVER into "CAT".

sc ror o rop o AlgpaTNE 1G 1,
operating on an answer field of 'ARGYLE SOCKS' puts SOCK into
"CAT".

SC rSr o Atopptx T,
operating on the same answer field puts OCKS into "CAT".

In single operands or in ored suboperands, only the first
suitable ANSWER field gets inserted, because the SCAN operation
terminates immediately on success. Thus

5C AR U A
operating on an answer field of 'SALLY SELLS SEA SHELLS BY THE
SEA SHORE' matches immediately with ¥SALLYY and only ALLY gets
put into "CAT", not ALLY HELLS EA HORE.

116

PART IV - CONCISE DISCUS SPECIFICATIONS

SPECIFICATIONS This section of the MANUAL defines the

basic elements of DISCUS, for use as
, ready reference and as a recapitulation

of the material presented in PART II and PART III. As stated

in the INTRODUCTION, DISCUS is an interpretive man-computer

interface system, currently implemented as a conversational

CAI language. It is programmed entirely in assembly language,

fbr the IBM 360 series. It is characterized by fast execution,

econonmy of core, and ready interface with CRT-oriented time-

sharing systems.

ARCHITECTURE See block diagram, page 115.
REQUIREMENTS Source 80-byte card images in

DISCUS source language.

Compiler The program which converts
: DISCUS source code to DISCUS
OBJECT code. Consists of
approximately
8500 bytes of basic assembly language
2000 " for output buffers
800 " for each input buffer
26 " for each unique label
(symbol) compiled
2n bytes for print buffers where
n is the block-size of the
SYSPRINT data set (see
page 134, control card number

4.

Fxecutor The program which interprets
the DISCUS OBJECT data set.
Consists of approximately
8500 bytes of executable code
4900 " for each individual
using the system.

117 -

=113~

(REQUIREMENTS, cont.) Object Data .

' Set The data set into which the
DISCUS OBJECT. text is placed
by the compiler. The format
of the object data set is

DCB=(RECFM=VB ,BLKSIZE=1000)

Terminal CRT displays which may be
erased;
written from top left corner
to bottom right corner, with
a variable number of charac-
ters;
read, from either the top
left corner to the last data
byte on the screen, or
from the first position of
manually-entered data to the
last position of manually-
entered data. Any line from
2 to 100 bytes in length
and a total screen of up to
1100 bytes can be accomo-
dated.

CURRENT IMPLEMEN~- DISCUS is currently implemented in time-
TATION sharing systems operating under IBM
08/360 (Release 1T7) at the Berkeley and
Los Angeles campuses of the University of California. Terminal
equipment in use at these locations, respectively, consists of

a Sanders 730 CRT System and a CCI 30 CRT System.

~

0. 48’

114

- — e A At o i

LIXF

7477

=i g

NY-

1103790
aN

SYTLINIOI GNT ONY ONINNIDIZ o1 L FAO0 ASIINFL see

JLYIYIOGIIIY 31 LHYLSIY TISN WYHIGYS LSKT SO INFN STV, 4+

-013 *J0740LS ‘SNOILINAF TOYINOD AU¥ESIIN TIF ¢

7
|
i LNPNLE
L 3 “ .‘ ||||| J
! |
J 3 f
ﬁ \\ * ! &LLNY w “ M
| 7402 FW THSNO: - wa {
J00M2 yorL o 7) L7 m “ “
.. AN N _
.
Il/l /// — m] ”
//// N TNINHOI WD) ONIWIOI AYNHOD “ OVVAHOI
N Ty BV 22 . Ax , My FhAS
400 ~ . owwyn} !
v : " ” .Bx.ﬁm 2 “
1 100 } \ |
LI NN 0D omwin ' lowsos amwoo| || avmmo
[A 77 §% 7 4 oMF 182 ¢ o
AN A I 4
~31KLS
CLXIN))
1™ SINNT
W00 Nrwoosy 2NFONLE NITI® b
— /4 g*\\
N0 239 N30 Lops| T TIIEA

»
©

118 .

-115-~

GLOSSARY

Statemei >

Opecode

Operand

The following definitions correspond with
standard meanings for the terms defined,

qualified to apply to DISCUS.

A statement is the smallest cohesive uni*
with which the DISCUS compiler will deal.
The DISCUS COMPILER accepts statements,
each of which must contain one and only
one opcode (q.v.) and each of which must
be terminated by a semicolon as an end-of-
statement delimiter. A statement usually
contains an operand (gq.v.) between the
opcode and the end-of-statement delimiter.
A statement may be identified by a label
(q.v.) which must itself be followed by
a colon. Thus the format of a DISCUS
statement is typically:

: LABEL: OPCODE OPERAND;

A DISCUS OPCODE defines the nature of
the operation which is to take place.
If the statement includes an operand,
at least one blank must be interposed
between the opcode and the operand.
If no operand is encoded, the opcode is
followed by the statement-delimiting
semicolon, either immediately or with
one or more blanks interposed. Thus
the following are all legal:

OPCODE OPERAND;

OPCODE OPERAND ;
OPCODE;
OPCODE ;

Any of several types of parameter. These
may be absolute data, symbolic labels, or
codes peculiar to special operations. The
OPCODE generally performs an operation
either on or using an OPERAND. One or
more blanks may be interposed between the
end of the OPERAND and the statement-
delimiting semicolon. (For the effect of
doing this with a WRITE opcode, see page
22ff.) Both of the following are legal:

OPERAND ;

OPERAND H
The OPERAND must always be preceded by at
least one blank.

420

~116-

(GLOSSARY, cont.)

Suboperand

Label

Word

Literal

Character
String
Variable

This is a term peculiar to DISCUS, de-
noting portions of a SCAN operand which
are logically separated by an ampersand
(&), "or-bar" (}), or comma. Thus in
the following:

SCAN BEANS PEAS, CARROTS & CORNj;
the following consvitute suboperands:

BEANS PEAS ,
CARROTS and
CORN.

A IABEIL is a character string used to
identify and locate a statement. In
the current implementation of DISCUS,
it may not exceed 8 alphanumeric char-
acters, of which the first must be alpha-
betical. It must end with a colon, or
one or more blanks followed by a colon.
It must not be broken by blanks. No
more than one label may be attached to
a single statement, nor may the same
label be attacheé to more than one
statement.

L JORD is a string of characters which
doe:s not include imbedded blanks, special
characters, or symbols, and which is sur-
rounded by blanks, either explicit or
implicit. WORDS used in SCAN statements
constitute elements against which a user's
response may be compared.

A LITERAL is a string of characters,
punctuation marks, symbols, and explicit
blanks, not used in a special code semnse.
In order to be treated as a LITERAL such
a string must be surrounded by single
quotation marks. (For use of these marks
themselves as LITERALS, see example,
page 26. Inclusion of a character in

a LITERAL suppresses any spec’al char-
acteristics which it may normally Possess
in the DISCUS system.

A CHARACTER STRING VARIABLE is a string
whose length or content is variable and
which is accessed by a label. Its con-
tents may be changed during execution.

Tz

=117~

(GLOSSARY, cont.)

Numerie

Mateh Block

Fagil Block

Unconditional
Block *

Block Level

The space for a chearacter string vari-
able must be pre-established by a sepa-
rate defining statement.

A NUMERIC VARIABLE is a field intended

to contain a numerical guantity whose
magnitude may be changed during execution.
The space for a numerical variable must
be pre-established by a defining state-
ment. The contents of & wvaiiable are
accessed by referring to itns label.

A block of code which is entered only if
a SCAN or 1EL. immediately preceding it
has been satisfied.

A block of code which is entered only if
a SCAN or TEST immediately preceding it
has not been satisied.’

A block of code wnich is entered regard-
less of match or fail condition resulting
from a SCAN or TEST. Entry into an UN-
CONDITIONAL BLGCK serves to increment the
existing block level.

A numerical value (1 to 250) assigned
to individual nested blocks. Thus a
block within a block which is within a
block at level 1 will have a block level
of 3.

*Sometimes called the '"Block block."

122

-~118-~

OPCODES The functions of the DISCUS OPCODES
and their modifiers are defined in
the pages which follow. Technical

notes are added in some cases. The order of presentaticn is

the same as that used in PART III.

WRITE or W The WRITE opcode (command) causes the
screen to be written from the top, after
erasing all previous display material.

If the number of characters in the statement exceeds screen

capacity, it will write to the end of the screen and then wait

until the console-user presses the interrupt button (or other
designated signal, such as "send page" on the Sanders system).

This action is treated as a continuation of the WRITE command;

the screen is erased; and the remainder of the statement is

displayed.

End-of-line formatting is automically performed.

WRITE(NF) or W(NF) This command writes without end-of-line
formatting.

WRITE(ND) or W(ND) This command writes without first
erasing the screen. The characters to

be displayed are laid down beyond the
previously-written text. The format or no-format style of the
preceding WRITE command is continued in the WRITE(ND).

423" .

-119-

ANSWER or A The ANSWER OPCODE sets in train the

following operations:

1. It causes a carat to be displayed at the beginning of the
line below the currerntly-displiiyed WRITE text, tc invite key-
board input. The input itself is displayed as typed, without
disturbing the WRITE display, and without being considered by
the computer until "send" is signalled by the student.

2., After '"send," ANSWER takes whatever has been typed¥* and

puts it in a character variable whose name is "ANSWER." (This

is not an ordinary lat=l address, but a reserved word, predefined
in the system.) The AMSBWER fiell can contain as many as 250
characters, any excess being trunc=ted on the right. A record

is also kept of the total number of characters present in the
ANSWER field.

. During a SCAN only, in addition to the characters and
blanks actually input, ANSWER inserts a blank at the beginning
of the field, and one at the end. Thus the character-count
is always increased by two.

At the start of program execution, the ANSWER field contains
unknown information (usually nothing). Thereafter it contains
the data recorded there on the occasion of the last "send."
Whenever a new "send' is signalled, the new input (which
may also be nothi=g at all) entirely displaces what was there
before.

In order to save the contents of the ANSWER field at a
particular stage during execution, they must be transferred to
a defined character variable (see SET, p. 57). Meanwhile,

however, they can be scanned successively for various elements,

*None of ‘the constraints applying to the coding of reserved
characters (single quotes, double quotes, etc.§ are imposed on
student input. If the student inputs any of these, they are
automatically treated as literals.

o 124

-120-

may be gquoted in WRITE displayed. by imbedding the reserved
word '"ANSWER" (always in double guctes) in the WRITE operands,
may be added-to, and may have selected material copied out

of them through the use of ''starred variables"” coded in SCAN
operands (see p. 111).

ANSWER(NF) or A(NF) This opcode functions in exactly the
same way as ANSWER, except that instead
of placing & carat and cursor at the

beginning of the line below the last line of WRITE text, it

eliminates the carat altogether and places the cursor at the

end of the WRITE text, or at the end of any elements "supplied"

to the screen by the ANSWER operand (see p.39). The student

may back the cursor across such elements in order to fill in

a blank anywhere in the ANSWER operand. This is illustrated

in the following example:

Statement: - WRITE PLEASE SUPPLY THE MISSING WORDS IN THE FOLLOW-
ING FRAGMENT CF SHAKESPEARE':'/ WHEN TO THE
SESSIONS OF SWEET SILENT / I SUMMON UP;

A(NF) COF THINGS PAST;

Displaey: -

WHEN TO THE SESSIONS OF
SWEET SILENT

I SUMMON UP

OF THINGS PAST _

Confronted with this display, the student would
be eble to move the cursor back as shown below,
overwrite the solid line, and have his input con-
sidered as part of the ANSWER field:

Display: -

WHEN TO THE SESSIONS OF
SWEET SILENT

I SUMMON UP

OF THINGS PAST

He could move the cursor further back, i.e.,

into the block of WRITE text, but his input will
not be seen by the ANSWER statement. Accordingly,
the example represents a poor formulation. Cor-

rectly encoded, the ANSWER operand should have
been written

Statement: - A(NF) T SUMMON UP opr
THINGS PAST.;

126
~122-

SCAN or SC SCAN searches the ANSWER field for ele-
ments specified in its own operand.
These elements may consist of words,

strings of words, single characters, numerals, punctuation

marks (coded as literals) and blanks (also coded as literals).

A string containing a combination of words, blanks, punctuation

marks, etc., if it is to be sought in exactly the same form as

that in which it appears in the SCAN operand, needs to be speci-

fied as a literal in its entirety by surrounding it with single

quotes. If intervening words in the ANSWER field are acceptable,

the string should not be specified as a literal.

Statement SCAN SODIUM CALCIUM;

Result The ANSWER field will be searched for two
separate words, sodium and calcium, in that
order,

Statement SCAN 'SODIUM CALCIUM, ';

Result The ANSWER field will be searched for the

two words in that order, separated by a
single blank and followed by a comma.
Successful match of a SCAN specification against some part
of the ANSWER field is reflected by tre setting of a condition
code to "match'". Failure sets the conditicon code to "fail".
The SCAN operand can be divided into two or more sub-operands,
each of which is compared (in the order of their specification)

against the contents of the ANSWER field until a specified com~

bination succeeds, at which time the condition code is set to
"match", scanning ceases, and processing jumps to the next
statement.
Suboperands are separated from each other by commes, or
"

"OR"-bars ({), both of which act as "or" logical operators, or

by ampersands, which serve as "and" logical operators.

Statement SCAN SODIUM, CALCIUM;
Result The ANSWER field will be searched first for

SODIUM. If found, the condition code wilil
be set to "match" and execution will jump
o the next statement beyond the delimiting
semicolon. If not found, the ANSWER field
will be searched for CALCIUM,

127

-123-

Statement SCAN SODIUM & CALCIUM;

Result The ANSWER field will be searched first for
SODIUM, then for CALCIUM. The "match" con-~
dition code will be set only when both are
found. The order in which the two appear
in the ANSWER field will not affect the result.

When it is desired that the ANSWER field will be sesrched
for elements which will match the contents of some variable,
the latter can be specified in the SCAN operator simply by re-~

ferring to the variable's label address, in double guotes.

Statement SCAN "CHEMICAL";
Result If CHEMICAL is the label of a character

variable containing - say - PHOSPHATE, then
PHOSPHATE is the word which will be com-
bPared against the ANSWER field, as it were
another literal.

If CHEMICAL is an arithmetic variable, the
numerals making up its contents are treated

as characters, in a literal string. Combi-
nations of letters, words, blanks, punctuation
marks, etc., in a variable's operand are al-
ways treated as a single literal string when
expanded into a SCAN operand in this way.

Statement (Assume CHEMICAL contains PHOSPHATE, SULPHATE)
SCAN '"CHEMICAL",
Result Equivalent to that of

SCAN "PHOSPHATE, SULPHATE';

In the current implementation of DISCUS there is no way of
activating, in a SCAN operand, commas or ampersands fetched from

a variable., Thus the contents of a variable must always be

scanned for in their entirety, as a literal, rather than as a
group of suboperands.

A third logical operator ussable in a SCAN operand is ‘the
"not" sign (-). It has the effect of negating all elements in

the suboperand in which it appears.

Statement SCAN — CAT;
Result Any ANSWER field which does not contain

CAT will be matched.

138

~12h- é

Statement

Result

Statement

Result

Statement

Result

Statement

Result

SCAN CAT — MOUSE; or SCAN — CAT MOUSE;

Any ANSWER field which contains neither CAT
nor MOUSE will be matched.

SCAN CAT & — MOUSE;

An ANSWER field containing CAT but not MOUSE
will be matched, since the — does not apply
to the cat suboperand.

SCAN CAT, — MOUSE;

The ANSWER field will be searched first for
CAT. If successful, the operation will tex-
minate without checking for — MOUSE. If un-.
successful, the ANSWER field will be searched
for — MOUSE, and if no MOUSE is found a match
condition will be set.

SCAN — MOUSE, CAT;

The ANSWER field will be searched first for
MOUSE. If no MOUSE is found, & match con-
dition will be set and execution will Jjump

over the CAT suboperand. If a MOUSE jig found,
scanning will continue to the second suboperand.

By scanning for parts of words as literals it is possible

to obtain matches against misspelled words, in many cases. TFor

such purposes the literal for a word-beginning must include the

starting blank, the literal for a word-ending must include the

ending blank, and the literal for a possible word-middle should

include no blanks at all.

Statement

Result

Statement

Result

——— e

Statement

Result

SCAN ' DOD';

A match will be obtained if the ANSWER field
contains any word beginning 'DOD...'

SCAN 'DRON ';

A match will be obtained if the ANSWER field
contains any word ending with '...DRON'

SCAN 'CAH';

A match will be obtained if the ANSWER field

contains any word containing that combination.

All three will succeed with DODECAHEDRON,
for example.

129 -

125~

DEFINE or D DEFINE statements are used to establish,
without initializing, the variables to
) be used in a particular DISCUS program.
In each case the DEFINE opcode must be qualified in such a way
as to establish whether the wvariable is to be used to contain
mathematical data or characteré:

DEFINE{A) or D{A) - arithmetic
DEFINE(C) or D(C) - character

In addition, the maximum length in number of characters
(up to 250) must be specified for D(C), in order for the com-
piler to reserve adequate space for plauned content.

DEFINE statement are always labelled, otherwise the
variables which had been created would not be accessible.
Typical defining statements of each type would be:

ADDO: D(A);
CHAR: D{C) 100;

130

-126-'

SET or S The SET statement is used to initialize,
alter, or clear the contents of a var-
iable. The SET operand always contains

three elements: an objective variable (to the left of an equal

sign), the equal sign itself, and the material with which the
variable is to be equated. Names of variables specified in SET
operands are always separately surrcunded by double quotes. Let

us assume "EINSTEIN" and "RELATIVE" are arithmetic variables.

Statement SET "EINSTEIN" = "RELATIVE";

Result Whatever the contents of RELATIVE may be now
become the sole contents of EINSTEIN.

Statement SET "EINSTEIN" = "EINSTEIN" + "RELATIVE";

Result EINSTEIN now contains its prior content plus

the contents of RELATIVE.
RELATIVE is unaffected in both cases.

The kind of varieble (i.e., arithmetic or character) which
is the object of the operation, and which is always named immedi-
ately after the opcode, determines whether the operation will be

arithmetical or character-manipulative.

Statement SET "ADDO" = 2 + 2

Result If ADDO has been defined through a D(A), it
will now contain 4.

Statement SET "CHAT" = '2 + 2';)

Result If CHAT has been defined through a D(C), it

will now contain the literal 2 + 2 (2¢+¥2).

Words or strings placed in character variables must be speci-
fied as literals, as above. Otherwise the operation will fail, or

have unspecified results.

Statement SET "CHAT" = 2 + 2;
Result CHAT is set to null.

If an attempt is made to place a character variable in an
arithmetic variable, numerals and operators will be dealt with
arithmetically, but ell other characters will be converted to

zero and disregarded.

134

P
L

-127~

Statement SET "ADDO" = '20 QUESTIONS';
Result ADDO will contain the number 20.

The presence or absence of blanks outside of integers and

literals in any SET uperand is immaterial.

Statements SET "ADDO" = 128786+k;
SET "ADDO" = 128786 + Y H
Result The same.
Statements SET "CHAT" = 'A' 'B!' 'C! B! ',hy
SET "CHAT" = 'ABCEk,D':
Result The same.

The contents of a variable may be altered directly, as in

SET "ADDO" = L;
SET "CHAT" = 'HELLO, THERE!';
or indirectly, as in
SET "ADDO" = "MATH";
SET "CHAT" = "VERBOSE";

A character object variable is always set to the concati-
nated result of the expanded variables and the literals on the
right side of the equal sign. Arithmetic variables are expanded
and converted to character string equivalents before processing.

One or more arithmetic operations may be performed on the

contents of an arithmetic wvariable, using the following operators:

+ add
- subtract
* multiply

/ divide
e anything else is considered a plus sign.

Arithmetic expressions sre evaluated from left to right, with

N \
no hierarchy of operations being observed. All processing is

in integer arithmetic, and all intermediate fractional results

are dropped.

Statement SET "ADDO" = "MATH" + 10 / 13 + 2 ¥ 5;

Result (Assume "MATH" contains 7)
ADDO will be set at 15.

If the prior contents of ADDO are brought into the operation,
the sequence of doing so is highly important. The result of

L2
23S

-128-

S "ADDO" = "ADDO" + "MATH" + 10 / 13 + 2 * 5 is guite different
from the result of S "ADDO" = "MATH" + 10 / 13 + 2 ¥ 5 + "ADDO".

In dealing with character variables, arithmetic operators

have no effect:
Statements SET ''CHAT"
SET "CHAT"

Result The same. The contents of VERBOSE are placed
in CHAT, followed by the contents of PROLIX.

"VERBOSE" + "PROLIX";
"VERBOSE""PROLIX";

[

(Neither VERBOSE nor PROLIX is affected)

In order to prevent concatination of elements packed into

character variables, it is often necessary to specify blanks:

Statement SET "LIST" = 'COFFEE' + 'TEA' + 'ROOT BEER';
Result LIST will contain COFFEETEAROOT BEER.
Statements SET "LIST" = 'COFFEE' 'B' + 'TEA' + 'B' +

'ROOT BEER'; or
SET "LIST" = 'COFFEEB' 'TEAB' 'ROOT BEER';
Result LIST will contain COFFEE TEA ROOT BEER.

Both arithmetic and character variables are cleared by omitting

to specify anything to the right of the equal sign.

Statement SET "ADDO" = ; or SET "ADDO" = @,
Result ADDO will contain zero (@).
Statement SET "CHAT" = ;

Result CHAT will contain nothing.

While numerical quantities may be subtracted from the
contents of arithmetic variables, there is no way of subtract-
ing characters from character variables except by truncation,
that is, by transferring the entire string to another variable
which has been so defined that there will not be room enough
for all the characters, and the excess will be dropped off.

A character string may be scanned, however, for particular
elements, after first being transferred to the ANSWER field

for the purpose.

133

129

Statements SET " ANSWER" = "CHAT";
SC COFFEE;

Result If "coffee" appears anywhere as a separate
word in the string, it will be detected
and a match condition will be set.

TEST or T The TEST statement compares the contents
of an object variable (specified to the
left of a logical operator in the operand)

with whatever is specifi=d to the right of the operator. TEST

much resembles SCAN, except that it must always succeed in its
entirety in order to set the condition code to positive.
The logical operators used in TEST are:
equals
is greater than

is less than
is not (=, >, and/or <)

JAavoa

and they may be used singly or in any combination.
Example 1: T "X" = L

Example 2: T "ALPHA" ='BNOB';

Example 3: T "Y" > "zZ" + "N" - 2

JUMP or J The JUMP statement transfers control
unconditionally to a statement located
elsewhere in the program, as specified

by that statement's label address, entered (EQE in guotes) as

the operand of the JUMP statement.

Statement JUMP SASPARII;
Result Processing breaks sequence and jumps to the

statement whose label is SASPARIL.

124

-130-

O

ERIC

Aruitoxt provided by Eic:

MATCH or M Permits entry into the block of code
which follows it only if the last pre-
ceding SCAN or TEST has succeeded, i.e.,
if the current condition code is positive. As each such block
is entered, the level of processing drops to the next lower
level. This brings intc pilay a new condition code which can
be modified without affecting the conditions that enabled entry
into that block. In the current implementation of DISCUS, each
statement in the block is precessed but not executed until an
END statement (q.v.) is encountered st the same level at which
the "ignore mode" was initiated. Blocks may be nested to a
depth of 250.
A MATCH statement may be suppressed after N executions by
specifying N. The N-counter (hereinafter called the "MFB~cour:ter")

is reset by FRAME (g.v.).

FAIL or F Permits entry into the block of coae
which follows it only if the current

. condition code is negative. Otherwise,
FATI, operates in exactly the same way as MATCH.

BIOCK or B : Permits entry into the block of code
which follows it, regardless of current
condition code setting. BLOCK serves

to drop the level of processing one level. Looping may be

limited in the same way as is done with MATCH and FATL, by an

"MFB-counter."

135

-131~

O

ERIC

Aruitoxt provided by Eic:

FRAME or FR The FRAME statement marks the beginning
of a2 logical division of DISCUS :ode,
and is usually labeiled. It has no

operand, &nd performs no overt propessing. It does, however,

reset all MATCH, FAIL, and BLOCK recursion counters ("MFB-
counters™) to zero, serves as a point of reference Tor USE
statements accessing it, and serves as a restart location.

A "frame'" as referred to in this manual comprises all
the coding beginning with a FRAME statement and ending at the
next FRAME statement in seguence. Normally a frame contains

a. Instructional test (w)

b. A guestion of requirement (W or W(ND))

c. Opportunity for student input (a)

d. Program reactions (s¢c, T, 8, M, B, J, U, S, E, W, etc.)

In order for it to be meaningful as a conversational unit,

it must contain at least (c) and some form of (d).

NOTE or N The NOTE opcode causes its operand to be
printed in the OBJECT listing. It is
otherwise inert. In addition to pre-

serving and drawing attention to programmers' memoranda, NOTE

can be used as a temporary replacement for other opcodes, when

it is desired to deactivate a statement temporarily without

actually removing it from the source or from the object module.

This can be done very simply by encoding Nb shead of the existing

opcode.

END or E This opcode terminates a block which

was entered at its own level (through

a MATCH, FAIL, or BLOCK statement). To
emerge from a nested block structure, a separate END statement
is required for each upward step, and the total number of END
statements must egual, but not exceed, the sum of all MATCH, FAIL,

and BLOCK statements associated with that structure. ;

136

-132-

USE or U The USE statement transfers control
temporarily to one or more statements
accessible through a label address

specified in its operand. The scope of this instruction depends

on the nature of the first statement encountered at the location
addressed:)

a. If it is a FRAME statement (g.v.) the entire frame
will be executed, and as soon as the next FRAME state-~
ment is encountered processing will return automatically
to the point immediately after the USE statement which
invoked it.

b. If it is a MATCH, FAIL, or BLOCK statement, it will cause
the entire block governed by that statement to be exe-~
cuted, and will return automatically as soon as it en- -
counters an END statement at the same level as the MATCH,
FATIL, or BLOCK statement by means of which it first
entered the blqck.

c. If it is any other kind of statement it will process

that one statement and return.

137

ERIC |

~133-

STPHPRE TSR

JOB CONTROL LANGUAGE In order to compile a DISCUS source
FOR COMPILING DISCUS program in either the UC (Berkeley)

Or‘UCLA systems, certain Job Control
statements must precede and follow the source deck when it is

read into the IBM/360.

navil FR1
LU |

57 /

#/SVEUT I DD CYROUTeA DCBe CRECF HoVRAL LRECLS 250 MXBI2Cmp2> . st
. SPACES (TRKs €10 1 DDaVIILINFoFR= 1} RetatII TuPALS BT

4/D1SCUS DR DSrte [LR, RAVIG: DISPa(QLB KEEP) o
#7SYSPRINT DD TYSIUITad« BCReMXS]ZEwkaS Han
/7STEPLIZ BB DISPeE, Btnve LR DATCHLTR . RERERL)
/4 EXEC PRNBTAION PARNS " STMAGINa() o 72D TTRZ® A dataas
44 PRV ICHN UON (WN9403: 7080 188)1 nou:um REGLEVEL =10 CLASES. . S bssiss

P ."..'.‘ S P — e
. . . B TEH]
' - -)
—_——)
' Siee vicas i
(1) .)t . ¢ l
s s T [Cemeeme
The following control c to the system implemented

at Berkeley:

1. //J3589kJgcm JoB (5894,5,200,100) ,MEREDITH,MSGLEVEL=1,CLASS=L
A standard JOB card for IBM 360 running under 0S/360
(version 177.

2. // EXEC PGM=DISCUS,PARM='SORMGIN=(1,72),TTRZ'
An EXEC card specifying the normal production DISCUS
compller and PARMs for special functions (see Note
#11 below).

3. //STEPLIB DD DISP=SHR,DSN=ILR.BATCHLIB
A STEPLIB card defining the library in which the DISCUS
compiler resides.

4, //SYSPRINT DD SYSOUT=A,DCB=BILKSIZE=n (n is any integral multiple
of 133)

A SYSPRINT card specifying where the listing of the program
as compiled is to be written.

1.38
E;BJ};‘ ~13h-

5. //DIScUs DD DsN=ILR.NAVIG,DISP=(OLD,KEEP),
SPACE=(TRK,(1,1)),VOLUME=SER=ILRO4 ,UNIT=231L4

The data set in which the compiled DISCUS obJject code
is to be placed for later execution.

6. //SYSUDUMP DD SYSOUT=A,DCB=(RECFM=VBA,LRECL=125,BLKSIZE=882)

For compiler or system error only.

7. //SYSIN DD DATA

A SYSIN card indicating that the DISCUS source program
follows.

8. Deck of source statements.

9. /*
Marks end of DISCUS source.

10. //
Marks end of program.

11. The PARM field may contain aay combination of the following,
in any order separated by commas (no blanks):
a. SORMGIN=(n,nn) Sets the margins of the source card

images, "n" being the number of the columm on the
‘punch card for starting the image (as low as 1) and
"nn" being the number of the column for ending the
image (may be as high as 80). (If not specified, (1,80)
is assumed.)

b. TTRZ C-~nerates a table of correspcndence between
statemrn. numbers and the actual direct access lo-
cation. ‘relative) of the statements as compiled.
Both are printed alongside the statements in the
object listing. The TTRZ number provides ready
access to any statement through AUTHOR MODE (see
PART V.) ‘

c. SNAP For system debugging only.

d. STOP=stopcharacter When the single»byte-stop—
character is encountered in a source card image, pro-
cessing continues at the beginning of the next card image.

e, DEBUG For system debugging only. A listing of all
DISCUS statements, with special flags, is produced.

f. SYMBOLS=number The absolute maximum number of symbols
for which utility space will be reserved is here spec-~
ified. If not specified, all the core storage in the
program's region will be used for symbol table strrage.

139

-135-

PART V - SYSTEM AUTHOR MODE

DESCRIPTION System Author Mode, is a mode of oper-
ation available at the student terminal
by means of which a DISCUS user (in the

sense of an author/instructor, programmer, editor, etc.) can

artificially influence execution and can arbitrarily jump from
one part of the program to another. It may be invoked by en-

tering the special command //A=Y at the terminal. This command
may be entered at a carat or, if there is none, in the top left

hand corner of the screen.

DISTINGUISHED FROM In Part III, as one of the subroutines
PROCTOR AUTHOR MODE useful in the programmer's repertoire,
we suggested one which would permit a
user to jump execution to another part of the program without
using DISCUS System Author Mode. This, Proctor Author Mode,
device is essentially custom-made for a particular instruction-
al sequence, as it entails coding a SCAN command and a JUMP com-
mand for every unique location (according to label address) to
which one wishes to be able to jump.

This has its advantages and disadvantages.

On the one hand, Proctor Author Mode is a convenient way
of getting around in the program without worrying about the
precise disc location of the object statements (the TTRZ num-
ber). If the user makes a mistake in designating a label, he
is so informed, rather than being transferred to =ome wrong
point in the program. The labels can be directly keyed tc writ-
ten text =nd to the aﬁthor/instructnr's outline, --ad of ccurse
appear on all object listings opposite the ¢ ;atem=mts to wmich

they are =ffixed, as well as in a separate alphabetical 1=st

140

~-137~

showing the numbers of all statements referring to them.

On the other hand, in a program of any size, the work of
encoding and punching the hundreds of SCAN and JUMP statements
involved in a Proctor Author Mode routine is considerable, and
the resulting code is good only for one specific set of labels.
Moreover, it must be updated whenever the program itself is
substantially changed. The processing of this routine is fairly
expensive in terms of computer time: in the case of one of our
CAI courses, having 297 labels accessible by this method, the
IBM 360/40 takes up to 23 seconds of real time to get to the
last label on the list.

But its most serious weakness is that it doesn't reveal
what is going on inside the program, in the way the System
Author Mode does. Proctor Author Mode merely transz=rs from

normal execution in one place to normal execution Iz znother.

DIAGNOSTIC DISPLAY An integral part of SYSTEM -AUTHOR MODE
is the diagnostic display which appears
on the screen whenever invcke& through

a System Author Mode command from the terminal, and aidso when-

ever an unexecutable statement occurs during proce=sing. Ex-—

amples of both are shown on page 1hLO.

SYSTEM AUTHOR MODE The following SYSTEM AUTHOR MODE commands

co DS are available to the user:

/ /A=Y Enter author mode after ex=rution of
each statement.

Other author mode comm=rr= do not
depend on //A=Y having first been entered,
but when not under //A=Y rroressing will
revert to normal processirz =t the first
opportunity. After specif= cz1ly invcking
author mode through //A=Y, rocessing

remains in author mode wnti_ rewgi.cd.

149

-138-~

//A=N Turns off author mode.

//JI=N Suppresses all JUMP statements that

would normally be executed.
//I=Y Reinstates the operation of JUMP statements.

/ /S=number Causes processing to stop at the state-
ment number specified (per OBJECT list-
ing). May be pre-set at any time.

//V=block numberboffset (works only under //A=Y)
Causes the contents of a character vari-
able to be displayed. The user must speci-
fy the block number and the offset in
that block in order to retrieve the vari-
able from the student data set. The in-
formation describing the location can be

found in the source listing.

//FP=TTeRbZ This is the basic "jump" command in Sys-
tem Author Mode. The "TTRZ" refers to the
disc location of each statement, which
differs by one "R" from that indicated]
in that object listing. Thus if the user 2
wants to go to the statement whose TTRZ
as shown in the object listing is 1/6/30,

he should input

//F=16TB30.
The true location also differs by one "Z" :
from the TTRZ as shown in the diagnostic ﬁ
display. In case of doubt, use the numter
as shown in the object listing and advaze :
to the desired location through success— =z é

interrupts.

]ERjkj 142 .

-139-

EXIT (Berkeley) Exits from the program. The student data
END (UCLA) set is pregserved, and a notation of the re-

start location (last frame) is recorded.

EDITING There currently is no dynamic editing
facility within the DISCUS system. That
is, one cannot change the OBJECT MODULE

from the terminal unless such a facility is available outside

DISCUS, i.e., in the time-sharing monitor which controls the

overall operation. (UCLA's "URSA" monitor does provide this.)

DISCUS DIAGNOSTYIC SCREEN

REQUESTED AUTHOR MODE

Typical ' OFERATION STATM COND LEVEL TTRZ+1

Display s 7 FAIL 1 0-1-8
HZAPH — l

Interpretation:

The executor has just executed the Tth state-
ment in the program wkich is a SET statement.
The corditinn zode for current execation pur-
poses =s FAIL. Exermsion is proceeding at
level 1- The =statem=nt occupies disc storage
position: O-1-T7. Undernegth the line of hy-
phens is displ=syed The operand of the state-

ment in guestIon.

PART VI EXERCISES

WRITE SiATEMEWTS AND ANSWER STATEMENTS
SCAN STATEMENTS

USE OF LOGICAL OPERATORS IN SCANS
VARTABLES

DECISIONS

144 ¢

14—

143
147
151
153

160

HOW TO USE THIS CHAPTER

Space is provided (either as a display screen or as a few
blank 1ines) for you to write your answer to each guestion
as you proceed through this section.

For the most part, solutions to problems are provided
on the lower part of the same page, below a broken line. You
should cover everything below the broken line until you are

ready to check your answers.

114155 o

~1k2~)

WRITE statements and ANSWER statéments.

1. How will the following appear on the screen?
per-line sereen capacity.)

WRITE HER HUSBAND''S TO ALEPPO GONE. ;

(Assume a 27-character-

/ FEE. HUSBAND'S TO ALEPPO
GONE,

2. How will this appear? Show location of cursor after execution.

WRITE FOR '"MRS. CRUMLEY''S"' FRITTERS USE THE FOLLOWING
INGREDIENTS':'/bbbbl EGG/bbbbl'/'2 CUP ''PET'' MILK/
Bbbb2LB. FLOUR///GO0OD LUCK. ;

FOR "MRS. CRUMLEY'sS"
FRITTERS USE THE FOLLOWING
INGREDIENTS :

1 EGG

1/2 CUP 'PET' MILK

2LB.FLOUR

GOOD LUCK.

447

-1hh-

e s o S S e e . . . S e s e S e e S P S S i . S S S P S s S i ' S S Sl . e . Sl S S M (S e

3. How might the following display have been encoded?

NO, IN ANSWERING 'BURNHAM
WOOD™ YOU HAVE NOT CORRECTLY
IDENTIFIED THE INVENTOR OF
PYROGRAPHY .

4. How would you add the words "TRY AGAIN" to the above screen?

3. WRITE NO, IN ANSWERING '"'"ANSWER"'"' YOU HAVE NOT CORRECTLY
IDENTIFIED THE INVENTOR OF PYROGRAPHY.;

L, WRITE(ND) TRY AGAIN.; or W(ND) TRY AGAIN.;

148

~1lhs5-

5. Eow would you encode the statement creating the following display?
{Use b to indicate bleanks.)

TABLE OF ENGLISH GUN SIZES:

POUNDER DIA. (IN.)
32 6.41
= 5.82
18 5.29
12 L.62

9 L. 20

6. What opcode might be useful for displaying long numbers of
formulae, or to get the maximum number of words into a screen?

5. WRITE TABLE OF ENGLISH GUN SIZES ':'/bbPOUNDERbbbBBDIA.(IN.)/ -
bb-————— bbbbb———————— /bbbbBbebbbbbbbbG.hl/bbbb2hbbbbbbbbbb5.82/
bbbb1lObbbbbbhbbb5.29 /bbbbl2bbbbbbbbbbl. 62 /bbbbbIbbbbbbbbbbl.20/;

6. WRITE(NF); or W(NF);

o . 149
e

SCAN STATEMENTS

[A] Which of the following SCANs will intercept (i.e., match,
or succeed with) the ANSWER field contents shown?

SCAN statement ANSWER field

1. M_F SC BARE CHOIRS; BAREBbBCHOIRS

2. M_F__ SC EXPOSTULATION REPLY; REPLY AND EXPOSTULATION

3. M_F___ SC ' EXPO' 'ON ' REPLY; EXPLOSION REPLY

L. M _F SC 'POSTU' REPLY; YOUR EXPOSTULATION

MERITS A REPLY....

5. M_F__ SC QUINQUIREME OF QUINQUERIME OF NINEVEH
NINEVEH FROM DISTANT FROM DISTANT OPHIR
OPHIR;

6. M_F _ SC QUIT; I'M TIRED AND HUNGRY AND

T WANT TO QUIT!!!

e Kt . ot o e R S T e P S i e et e T i O WP G S S e S D T e Sl o — T s e o G S S S S B o e S D . S A e S S M

(soluticns to [A] 1-6)

1. Match. Intervening words and/or blanks do not affect the operation.

2. Fail. Elements must be in the stated order.
3. Fail. The literal - ' EXPO' is distinctive enough to screen out
"explosion!' (However, "exposition" would have matched.)

L. Match., The literal 'POSTU', taken from the middle of the word, is
more distinctive than would be a literal at either of the
ends. Neither "explosion" nor "exposition" would have got

through.
5. Fail. Difficult input ruined by single spelling error. A more
selective tr- rould have been more practical,
e.g., 5C ' Gous ' #H ' DISTANT ' OPH';

6. Match. Preceding, intervening, or following words and/or blanks
do not affect the operation, nor do the three exclamation
marks.

150

({A] cont.)

T. M_F__
8. M_F
9. M_F

10.M_F__

SC QUIT; I'M NOT QUITE SURE

SC T THE STATEMENT IS TRUE
SC ' T'; THE STATEMENT IS TRUE
SC 'T ' " THE STATEMENT IS TRUE

1

(solutions to [A] T7-10)

7. Fail.

8. Fail.
9. Match.

10.Match.

The SCAN demands a blank after the "t" of "QUIT". To
match both QUIT and QUITE the element should be specified
as a literal: 'QUIT'.

Same problem. The SCAN demands a blank on both sides of
the "t"

Will match any answer containing a word beginning with T.
In this case, it caught on IRUE.

Will match any answer containing a word ending with T.
In this case, it caught on STATEMENT.

124

" =1hk8~

[B] After displaying the question "Who was Horace Greeley?", suppose
you want to intercept answers of the following sense: - "He was
a newspaper publisher."” Formulate a SCAN operand which would
best suit this purpose. (Disregard possibility of negatives.)

sC

[c] Formulate a SCAN similar to the above, but with <he added fizbo=:

that it will succeed only if the answezer also menti—-ns ths
(New Yorl.) Tritune.

sC

[D] Formulate a SCAN which will ensure thzmi Me stude=nt uses a
semi—colon somevhere in his reply.

(solutions to [B] through [D])
[B] SC ' NEWSP':
[c] sc ' NEWSP' & ' TRIB';

[D] sc '3';

Q. 152
-149-

Formulate a SUAN which will emsure thie student’ = zzsolwte
accuracy in inputting the following:

Tt's not the 'eavy 'auls that ‘urts the 'ossess 'ooves; it's the

Tommer , 'ammer, ’ammer of the 'srd, 'ard 'Izhvays.

c

9]

(sclution to [E])

(E-

SC 'IT''S QT THE ''EAVY ''AULS THAT ''URTS THE 7".8

ISES 'OOVES:
IT''S THE '"'ZMMER, ''AMMER, ''AMMER OF THE ''A=D, AR

(Explanatiom: The lone singl= gquotes at the begim g :and

end of the string define the string as a literal, & *tax the
semicolon =nd commas need not be separately encloses: ' single

quotes. This does not suffice for the apostroohes,, f.swzver,
because they are always regarded as on-off switchess = literal,
whenever they occur. The basic rule applies, Zh=t zgle
quote, in order to be treated as a literal must fve {0 "2d,

whether or not it is inside a literal string.)

133

-150-

T 'IGHWAYS. ';

USE OF LOGICAL OPERATORS IN SCANS

[A] Which of the following would succeed? Which fail?

SCAN statement ANSWER field

J.MF SC FISH, FOWL, GOOD RED HAMILTON FISH
HERRING;

2. M F SC FISH, FOWL, GOOD RED FOWL AND FISH
HERRING;

3. T SC FISH, FOWL, GOOD RED CERTAINLY NOT HERRING!
HERRING;

L, ¥_F SC DIAMONDS & EMERALDS & A CARGO OF DIAMONDS
AMETHYSTS 3 AND EMERALIDS

5. % F SC DIAMONDS & EMERALDS & DIAMONDS AND AMETHYSTS
AMETHYSTS 3 BUT ABSOLUTELY NO

EMERALDS OR TOPAZES

&. M F SC SANDALWOOD & CEDARWOOD, SANDALWOOD AND SWEET

AND SWEET WHITE WINE WHITE WINE

. ——— e o . S e et S g i ——— ——— — -_

(solmticms to [A] 1-6)

1. Match. Succeeds on FISH.

2. Match. Succeeds on FISH. Skips FOWL and GOOD RED HERRING
suboperands.

3. Feil. Only part of the third suboperand is présént.

N, F=il. AMETHYSTS is missing in the "and"ed suboperand.

5. Match. All three "and"ed subaperands are present. Permuted

order is acceptable, because ampersands are used in
the SCAN statement.

6. Mateh. Fails on the first "and"ed pair of suboperands, because
CEDARWOOD is not present. Succeeds on third suboperamd
because AND SWEET WHITE WINE is present. Note that thk=
coder may actually have been thinking of the commas as
a comma rather then as an "or", and failed to turn it

into a literal with single quotes.

154
‘ -151-

(Use of logical operators in SCANS, cont.)

T.M F__ SC SANDALWOOD % CEDERWOCD CEDARWOOD BUT N
AND SWWET WEITE WINE SAFTMATHOOD

8. M_F __ SC 0T, ILLYRTA; THZ3 IS ILLYRIA. .0~

S. M_F__ ©C ATCADIZ, TINOTH TE™S IS ILLYRIA. _aDv

16.M_F__ SC ILLYRTZ, TILLYRTA; THIS IS ILLYRIA, _.T°

11.M_F__ SC T15DT & BREAD; MAN DCES NOT LIVE =¥
EREAD ALONE

12, F__ SC — EAT & BRTAD; VAN DQES NOT LIVE =T
BEEAD ALONE

13.M_F __ SC BEEAD & —EAT, NOT; ML DOES NOT EET
ZEZAT: ALONE

(solutions to [A] T-1L4)

7. Match. Succeeds on the "and"ed pmir of suboperandis. nversion
is acceptakle because of the ampersand.

8. Match. NOT is not pres=ent, so the stztement succeeéds cm <he
first suboperand.

9. Match. Fails on first submperend, goes on and succeeds ar
secand.
10.Match. Succeeds on first subcperand, skips the seccnd.
11.Fail. NOT is present, so the first of the two "amf”ed suboperamds-

fails, therefore &%l fails..
12.Match. EAT is not present; BREAD i=.

13.Match. EAT 3s present, therefore tie two "and"ed =uvboperands fail.
: NOT iIs present, so the thirc suboperand obtains = match.

195
~152-

LRTATLES

Tor t-r2 2xe—cises in tt & section, all charescier wvariables will be

Cpel. =é CELRA(number): :znd all arithmeti:z variables will be labell=d
L DODX momber) 5.

1. Defire CHARAG in suc® = wsy that it has room for 95 characters.

2. TDefim= ADDOX@ in sueh . way that it =as room for 100,000.

Z “neede a statement piizing the fc _lowing character string imto

THE CUERENT ENROLLMENT £T WCLA ISk

L, Encode a statement wia=ing the number 25,000 into ADDOX®.

(schutions zo [D] Z=L)

L. tEEEAg: D(C) &%

N

ADDOX@: D(a): (Thewrre is no way to specify the maximum size

== zx srithmet:c vaxisble) :
3
3. TEE "THARAP" = 'Ti= CURRENT ENROLLEENT AT UCLA IsSh'; s
b, SET "ADDOXP" = 2500C; (Don't use -cmmas)
i
Y
ERIC ﬁ
P ~153~

(var<aris:s, ==at.)

5. Tncoce a statem=nt that will concatenate the number in ADDOX@ to
THARAG.

6. How wrall you display to the student the contents of CHARA@ at this
Dpointh

T. VWit wosl appear on the screem?

8, Apother student signs up. How do you increment ADDOX@?

9. How dc you bring CHARAZ up to date? (Use additional variables
2s needed.)

(solrtions to (D] (5-9)

5. SET "CEAR4@" = "CHARA¢" "&DDCXE";

6. WRITE "CHARAQ",

7. THE OURRENT ENROL MENT AT UCLA IS 25000
8. SET ":ODCFP" = "ADDOX¢” + 1g

9. CHARA1: D{(C) 3k,

SET "CHARA1I" = "CHARAG": (Ony the rfirst 34 character of CHARA@
are stored in CHARAL); :

S=T "CHARAG" = "CHARA1" "ATDOX@";

137
-15h-

o AR b r e e L

(Varisbles, conmt.)

10.

1i.

As part of the =ign-in procedure, you might ask the student tc
type his last nmme, following which you ask him to type his first
pame and initisl. How would you store this informstion in both
straight and inverted forms?

(Step 1 - storimg First ANSHWER field)

(Step 2 - storing second ANSWER field)

(assume cheracter variables as necessary have been defined)

You decide to create a separate list of students' last names, and,
in order te get as many as possible into a single veriable, to save
only the first seven characters of each. How might you arrange this?
(Feel free to define additional variables as needed.)

(solutions to [D7 10 and 11)

10.

(step 1)

SET "CHARA2" = "ANSWER";

(step 2)

SET "CH&RA3" = "ANSWER" ' ,' "CHARA2";

SET "CEARA2"

"CHARA2" ' ' '"ANSWER";
CHARAL: D{C) T;
CHARAS: D(C) 2553

S "CTHARAL" = "ANSWER";

S "CHARAS" =

I
g
>
M
g
5

(Variables, cont.)

12. If 2ll the names are at least seven characters long, how many
can be stuffed into the variable, assuming one blank is left
between each seven character name? '

13. How can you find out if a new student has & name identicsl with
someone already on the list?

To begin:
W WRITE YOUR LAST NAME, PLEASE.;

A,

14. Place the number 1Lk4 into ADDOX2, and the number 37 into ADDOX3.

(solutions to [D] 12-1L4)
12. 31
255 / (1+7)

13. W TYPE YOUR LAST NAME, PLEASE.;

Aj
S "CH.ARA’-&" = "ANSWER";
S "ANSWER" = "CHARAS";

SC '"CHARAL",

MATCH will occur here if the new name is identical to one of the
old names.

14, 8 "ADDOX2" = 14k

s "ADDOX3"

]

37;

138

(Varisbles, cont.)

15. Place the mean of ADDOX2 and ADDOX3 into ADDOXL .

ADDOXL will contain

(solution to [D] 15)
15. S "ADDOXL" = "ADDOX2" + "ADDOX3" / 2;

ADDOXL will contain 90. (1kk + 37/2 [note truncation])

~157-

150

(variables, cont.)

16.

Suppose you want the student to construct and solve a problem

in cubic measurement. which the program would check for accuracy.
Five inputs are invoived. TFill in the blank items. (Solution on
next page.)

W WHAT LINEAR MEASURE WILL YOU USE?;

A

'Y

S H

W HOW WIDE IS THE OBJECT YOU HAVE MEASURED?;
A

S : :

W HOW ILONG IS IT?;
Ay

S

we

W HOW HIGH IS TIT?;

Aj
S H

1
S ;

W HOW MANY CUBIC DO YOU GET?;
Aj

S B

SC "ADDOX__";

-158-

484

e s o e s S e A At g PR A A S, TN AR S o1

(Variables, cont.)

(solution to [D] 16)
16. W WHAT LINEAR MEASURE WILL YOU USE;
Aj
S "CHARA6" = "ANSWER";
W HOW WIDE IS THE OBJECT YOU HAVE MEASURED?;
A,
S "ADDOX5" = "ANSWER";
W HOW LONG IS IT?;
Ay
S "ADDOX6" = "ANSWER";

W HOW HIGH IS IT?;

Aj
S "ADDOXT" = "ANSWER";
S "ADDOX8" = "ADDOX5" * "ADDOX6" ¥ "ADDOXT";

W HOW MANY CUBIC "“CHARA6" DO YOU GET?
A
sCc "aADDOX8";

(If a match is obtained with this SCAN, the following statement
might be executed:)

/
W CORRECT. ;
If not, the following:

W THAT''S ODD. I GET "ADDOX8" CUBIC "CHARA6".;

léijz‘ ~-159~-
162

DECISIONS

O

ERIC

Aruitoxt provided by Eic:

The second group of exercises dealt with one form of decision
making statement: the SCAN statement.

The other decision making statement is the TEST statement. TEST
is used for comparing all of the contents of one variable with all of
the contents of another. It can be used for the comparison of both
character and arithmetic variables.

The following DISCUS rules are worth reviewing before starting
the exercises in this group:

1.

TESTS and SCANS may be performed at any point in the program.

The two items to be compared in a TEST are always explicitly
stated.

A SCAN always compares its operand with the current ANSWER
field.

The result of a TEST or of a SCAN is always match or fail,
(success or non-success).

This result sets a condition code in the computer, which is
tested by subsequent MATCH or FAIL statements.

MATCH and FAIL statements concern themselves only with the
preceding TEST (or SCAN) on the same level.

A MATCH ststement at a given level passes execution to the next
statement if (and only if) the condition code indicates success.
Otherwise it passes control to the statement following the

next END statement on its own level.

A FAIL statement is precisely the same as a MATCH statement
except that execution proceeds to the next sequential statement
if the condition code indicates fail.

-160~

AG3" -

Prohlems:

1. What would the following routine decide: What action(s) would
ensue?

W WHAT FITTINGS ARE USUALLY ASSOCIATED WITH PINTLESS?;
A

SC GUDGEONS;

M;

W CORRECT;

S. "NAUTICA" = "NAUTICA" + 13 (assume NAUTICA previously defined
as an arithmetic variable)

E;

F

W TI''M AFRATID YOU DIDN''T STUDY CHAPTER L.

Ej

1. The routine would decide whether the student has used the word
"gudgeons" in his reply. . Action, if so, would be to display
"Gorrect" and to increment an arithmetic variable which had been
defined and labelled NAUTICA. Action, if not so, would be to
display the words "I'm agraid you didn't study chapter LM

];RJ}:‘ -161-
A 164

(becisions, cont.)

2. What would the following routine decide, and what action(s)
woulé ensue?

W THE THREE MAJOR TYPES OF FILM USED IN MICROGRAPHY iI==

HAWKEN: A,
SC SILVER & DIAZO & VESCICULAR:
Mg
W GOOD. YOU REMEMBERED ALL THREE. ;
JUMP BAR;
E;
SC SILVER & DIAZO, SILVER & VESCICULAR, DIAZO & VESCICULAR;
My
W SILVER HALIDE, DIAZO, AND VESCICULAR. ;
J BAR;
E;
SC SILVER;
My
W SILVER HALIDE IS RIGHT. THE OTHER TWO ARE DIAZC %D VESCIGULAR;;
J BAR;
E;
SC DIAZO;
M3
W DIAZO IS RIGHT. THE OTHER TWO ARE SILVER HALIDE AND VESCICULAR. ;
J BAR; |
E;
SC VESCICULAR;

M;

élfRJf:‘ ~162-
S 165

W VESCICULAR IS RIGHT. THE OTHER. TWO ARE STLVER HALIDE AND DIAZO.:

W ONE OF THEM USES A PHOTOSENSITIVE METALLIC SALT EMULSION/
ONE OF THEM USES A PHOTOSENSITIVE DYE/
ONE OF THEM USES BUBBLES /// TRY AGAIN.;
J HAWKEN ;
E;
BAR: W WE WILL NOW SING HYMN NUMBER 35;

The form of "verbal flowchart" furnished on the page which follows is
useful for this kind of exercise.

~163-

166

FRAME LABEL:

Test:

() Whether

If yes.

If —ot,
() Whether

If yes,

If not,
{) Whether

If yes,

If not,
() Whether

If yes,

If not,
() Whether

If yes,

If not,
() Whether

If yes,

If not,
() Whether

If yes,

If not,

~164~

157

@

e11:

WORKSHEET

(Decisions, cort.)
{scirbion to [E 2)

FRAWE LABEL:

13
1]
0
o

1) Wmether

student inputs all 3

'2) ¥heth=r
studsnt inputs any 2

v

(3) Whethker

student inputs "silver" only

(4) Whether

student inputs "diazo'" only

(5) Whether -

student inputs ''vescicular" only

(6) Whether

student input was unrecognized

() Whether
ERIC e

If

If

If

If

If

If

if

If

If

If

If

If

If

YES,

not,

Yes,

not,

YES,

not,

YES,

not,

yes,

not,

YeSs,

not,

YES,

not,

WORKSHEET

Display '""Good, ete.";

Jump to BAR

Go to next scan (2)

Display complste ans=w=r3

Jump to BAR

Go to next scan (3)

"Silver is right...ewec.”.

Jump to BAR

(L)

"Diazo is right...etec.".

Jump to BAR

(5)

"Vescicular is right...ete.'.

Jump to BAR

(6)

Display hint; Jjump back to

location of ANSWER statement.

(not applicable in this case.)

1o i O i 8 b bt P AL

The ==xt Three problems de:il with this same exarmple,

Brack=t the MATCH and FAIL blocks in the coded "source" program,
as 1in This ezample:

M,

W GOOL. YOU REMEMBERED ALL THREE,;

J BAR;

E;

Does thz number of END opcowes egqual the sum of MATCH and FATL
opcodes?

Assuming that the sequence begins at condition code level 1,
indicate the condition code level applying to each block.

Was the last block ~ the FAIL block - really necessary as such?

(solutions to [E] 3-L)

3.

The number of END opcodes (6) eguals the sum of MATCH (5) and
FAIL (1) opcodes.

Condition level 2 is in effect in all blocks, since none of them
are nested.

No. The last entry on your decision worksheet should indicate
this. The WRITE statement and the JUMP back to the ANSWER.
statement will invariably operate whenever execution reaches
them. Execution can reach them only if none of the preceding
MATCH blocks has been successfully entered.

FAIL block should be used prineipally to identify a class of
failure, rather than total failure. This implies that one or
more general "cleanup" statements is often needed before pro-
ceeding to the next guestion.

169

5.. How might you ifmprcve the scan for "vescicular", assuming that

azcurate spelling Iy mot a prime requisite here?

(solution to [E] 5)
5. Probably "vescicular" would be misspelled oftenest as
vesicular
vesiculler
vesiculer
vesciculler
vescicullar
vesciculer
So the most vulnerable letters are those underlined below:
VESCICULAR

These can be "forgiven" by encoding the word as 3 literal
strings or required elements

' VES''ICU''R !

170
ERIC 16T~

Aruitoxt provided by Eic:

(Decisions, cont.)

Note:

HAWKEN :

the sequence of code of question 2 (page 162) may be written
so that the scanning and writing functions are separated,
as follows:

W THE THREE MAJOR TYPES OF FILM USED IN MICROGRAPHY ARE

s "EMU" = 0;
2
Aj
SC SILVER, DIAZO, VESCICULAR;
M;

SC SILVER;

SC DIAZO;

M;

s "EMU" = "EMU" + 2;
E;

SC VESCICULAR;

M;

S "EMU" = "EMU" + b;
biH

T "EMU" = T;

M;

W GOOD, YOU REMEMBERED ALL THREE;

T "EMU" = 6;

271

-168--

(Decisions, cont.)

6 M;

W "DIA" AND "VES'" ARE CORRECT. THE THIRD ONE IS "SIL";

W "STL" AND "VES" ARE CORRECT. THE THIRD ONE IS "DIA";

W "SIL" AND "DIA" ARE CORKRECT. THE THIRD ONE IS "VES";

W "SIL" TS RIGHT. THE OTHER TWO ARE "DIA" AND "VES";

10 M;
W "DIA" IS RIGHT. THE OTHER TWO ARE "SIL" AND "VES";
E;

T "EMU" = k4

1'7e

-169-

AN A S B N et R e Ll S - . e
VB 2 mees e et ST LT T T en T e AT AT ER M AT T T e R L e T LT i e

(decisions, cont.)

11 M;

W "VES" IS RIGHT. THE OTHER TWO ARE "SIL" AND "DIA";

J HAWKEN

BAR =smmr=-=

The above routine combines effective control with economy of means,
besides lending itself to further extension. Note that it enabled

us to improve on the earlier "shotgun" response to answers containing
only two out of the three terms sought.

173

ERIC -170-

:
£

